Show that the function is continuous but not differentiable at x=3.
Determine the value of the constant ‘k’ so that the function is continuous at x = 0.
For what value of k is the following function continuous at x = 2?
f ( x ) =2x + 1 ; x<2 k ; x = 2 3x - 1 ; x>1
Differentiate the following function w.r.t. x:
y = sinxx + sin-1x
Find dydx if (x2 + y2)2 = xy.
x2 + y22 = xy ............(i)
Differentiating with respect to x, we have,
2 x2 + y2 2x + 2y dydx = xdydx + y⇒ 2 x2 + 2y2 2x + 2y dydx = xdydx + y⇒ 4x3 + 4x2y dydx + 4xy2 + 4y3 dydx = xdydx + y⇒ 4x2y dydx + 4y3 dydx - xdydx = y - 4x3 - 4xy2⇒ 4x2y + 4y3 - x dydx = y - 4x3 - 4xy2⇒ dydx = y - 4x3 - 4xy2 4x2y + 4y3 - x
If y =3 cos ( log x ) + 4 sin ( log x ), then show that x2 d2ydx2 + x dydx + y = 0