Find all points of discontinuity of f, where f is defined as following:
f ( x ) = x + 3 , x ≤-3 - 2x , -3 < x < 3 6x + 2 , x ≥ 3
Find dydx, if y = cosxx + sinx 1x
Find the value of ‘a’ for which the function f defined as
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin x x3, x > 0
is continuous at x = 0.
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin xx3, x > 0The given function f is defined for all x∈ R.It is known that a function f is continuous at x = 0, if limx → 0- f ( x ) = limx → 0+ f ( x ) = f ( 0 )limx → 0- f ( x ) = limx → 0 a sin π2( x + 1 ) = a sin π2 = a ( 1 ) = alimx → 0+ f ( x ) = limx → 0 tan x - sin xx3 = limx → 0 sin xcos x - sin xx3
= limx → 0 sin x ( 1 - cos x )x3 = limx → 0 sin x . 2 sin2 x2x3 cos x = 2 limx → 0 1cos x x limx → 0 sin xx x limx → 0 sin x2x 2= 2 x 1 x 1 x 14 x limx2 → 0 sin x2x2 2= 2 x 1 x 1 x 14 x 1 = 12Now, f ( 0 ) = a sin π2 ( 0 + 1 ) = a sin π2 = a x 1 = aSince f is continuous at x = 0, a = 12
Differentiate X x cos x + x2 + 1x2 - 1 w.r.t. x
If x = a θ - sin θ , y = 1 + cos θ , find d2ydx2
If cos x y = cos y x, find dydx.
If sin y = x sin (a + y), prove that dydx = sin2 a + ysin a.
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
If z = yxsinxy + cos1 + yx , then x∂z∂x is equal to
y∂z∂y
- y∂x∂y
2y∂z∂y
2y∂z∂x
18/e4
27/e2
9/e2