Find all points of discontinuity of f, where f is defined as following:
f ( x ) = x + 3 , x ≤-3 - 2x , -3 < x < 3 6x + 2 , x ≥ 3
Find dydx, if y = cosxx + sinx 1x
Find the value of ‘a’ for which the function f defined as
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin x x3, x > 0
is continuous at x = 0.
Differentiate X x cos x + x2 + 1x2 - 1 w.r.t. x
Let y = xx cos x and z = x2 + 1x2 - 1Consider y = xx cos x
Taking log on both sides,
log y = log ( xx cos x )
log y = x cos x log x
Differentiating with respect to x,
1y dydx = x cos x 1x + log x ddx x cos x 1y dydx = cos x + log x cos x - x sin x dydx = y cos x + log x cos x - x sin x dydx = xx cos x cos x + log x cos x - x sin x .......(i)Consider z = x2 + 1x2 - 1
dzdx = x2 - 1 . ddx x2 + 1 - x2 + 1 . ddx x2 - 1 x2 + 1 2= x2 - 1 2 x - x2 + 1 2 x x2 + 1 2= 2 x3 - 2 x - 2 x3 - 2 x x2 + 1 2= - 4 x x2 + 1 2 ............(ii)
Adding (i) and (ii)
ddx xx cos x + x2 + 1x2 - 1 = dydx + dzdx= xx cos x cos x + log x cos x - x sin x - 4 x x2 - 1 2
If x = a θ - sin θ , y = 1 + cos θ , find d2ydx2
If cos x y = cos y x, find dydx.
If sin y = x sin (a + y), prove that dydx = sin2 a + ysin a.
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
If z = yxsinxy + cos1 + yx , then x∂z∂x is equal to
y∂z∂y
- y∂x∂y
2y∂z∂y
2y∂z∂x
18/e4
27/e2
9/e2