Find all points of discontinuity of f, where f is defined as following:
f ( x ) = x + 3 , x ≤-3 - 2x , -3 < x < 3 6x + 2 , x ≥ 3
Find dydx, if y = cosxx + sinx 1x
Find the value of ‘a’ for which the function f defined as
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin x x3, x > 0
is continuous at x = 0.
Differentiate X x cos x + x2 + 1x2 - 1 w.r.t. x
If x = a θ - sin θ , y = 1 + cos θ , find d2ydx2
x = a θ - sin θ , y = a 1 + cos θ Differentiating x and y w.r.t. θ,dxdθ = a 1 - cos θ .........(i)dydθ = - a sin θ ..........(ii)Dividing ( 2 ) by ( 1 ),dydθdxdθ = - a sin θ a 1 - cos θ
⇒ dydx = - sinθ1 - cos θ⇒ dydx = - 2 sin θ2 cos θ22 sin2 θ2⇒ dydx =- cos θ2sin θ2⇒ dydx = - cot θ2
Differentiating w.r.t. x,
ddx dydx = ddθ dydx x dθdx⇒ d2ydx2 = ddθ dydx x dθdx⇒ d2ydx2 = ddθ - cot θ2 x dθdx ....[ From equation (iii) ]d2ydx2 = - - cosec2 θ2 x 12 x dθdx = 12 cosec2 θ2 x 1 dxdθ
= 12 cosec2 θ2 x 1a 1 - cos θ ........[From equation (i) ]= cosec2 θ22 a 1 - cos θ = cosec2 θ22 a 2 sin2 θ2 = 14a x cosec4 θ2
If cos x y = cos y x, find dydx.
If sin y = x sin (a + y), prove that dydx = sin2 a + ysin a.
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
If z = yxsinxy + cos1 + yx , then x∂z∂x is equal to
y∂z∂y
- y∂x∂y
2y∂z∂y
2y∂z∂x
18/e4
27/e2
9/e2