Find all points of discontinuity of f, where f is defined as following:
f ( x ) = x + 3 , x ≤-3 - 2x , -3 < x < 3 6x + 2 , x ≥ 3
Find dydx, if y = cosxx + sinx 1x
Find the value of ‘a’ for which the function f defined as
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin x x3, x > 0
is continuous at x = 0.
Differentiate X x cos x + x2 + 1x2 - 1 w.r.t. x
If x = a θ - sin θ , y = 1 + cos θ , find d2ydx2
If cos x y = cos y x, find dydx.
The given function is ( cos x )y = ( cos y )x
Taking logarithm on both the sides, we obtain
y log cos x = x log cos y
Differentiating both sides, we obtain
log cos x × dydx + y × ddx log cos x = log cos y × ddx x + x × ddx log cos y ⇒ log cos x × dydx + y × 1cos x × ddx cos x = log cos y × 1 + x × 1cos y × ddx cos y ⇒ log cos x × dydx + ycos x - sin x = log cos y + xcos y × - sin y × dydx
⇒ log cos x × dydx - y tan x = log cos y - x tan y × dydx⇒ log cos x × dydx + x tan y × dydx = log cos y + y tan x⇒ log cos x + x tan y × dydx = log cos y + y tan x∴ dydx = log cos y + y tan x log cos x + x tan y
If sin y = x sin (a + y), prove that dydx = sin2 a + ysin a.
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
If z = yxsinxy + cos1 + yx , then x∂z∂x is equal to
y∂z∂y
- y∂x∂y
2y∂z∂y
2y∂z∂x
18/e4
27/e2
9/e2