Find all points of discontinuity of f, where f is defined as following:
f ( x ) = x + 3 , x ≤-3 - 2x , -3 < x < 3 6x + 2 , x ≥ 3
Find dydx, if y = cosxx + sinx 1x
Find the value of ‘a’ for which the function f defined as
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin x x3, x > 0
is continuous at x = 0.
Differentiate X x cos x + x2 + 1x2 - 1 w.r.t. x
If x = a θ - sin θ , y = 1 + cos θ , find d2ydx2
If cos x y = cos y x, find dydx.
If sin y = x sin (a + y), prove that dydx = sin2 a + ysin a.
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
If z = yxsinxy + cos1 + yx , then x∂z∂x is equal to
y∂z∂y
- y∂x∂y
2y∂z∂y
2y∂z∂x
B.
We have, z=yxsinxy + cos1 + yx∂z∂x= yxcosxy1y - sin1 + yx- yx2 + - yx2sinxy + cos1 + yx
x∂z∂x = y1ycosxy + yx2sin1 + yx - yxsinxy + cos1 + yx⇒ x∂z∂x = cosxy + y2x2sin1 + yx - z ...(i)Similarly, y∂z∂y = cosxy - y2x2sin1 + yx + z ...(ii)On adding Eqs.(i) and (ii)x∂z∂x = - y∂z∂y
18/e4
27/e2
9/e2