Let f : R → R be a continuous function definedby f(x) = 1/ex +

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

621.

The area (in sq. units) of the regionopen curly brackets left parenthesis straight x comma straight y right parenthesis colon straight y squared space greater or equal than space 2 straight x space and space straight x squared space plus straight y squared space less or equal than 4 straight x comma space straight x space greater or equal than 0 comma space straight y greater or equal than 0 close curly brackets is

  • straight pi minus 4 over 3
  • straight pi minus 8 over 3
  • straight pi minus fraction numerator 4 square root of 2 over denominator 3 end fraction
  • straight pi minus fraction numerator 4 square root of 2 over denominator 3 end fraction
299 Views

622.

If a curve y=f(x) passes through the point (1, −1) and satisfies the differential equation, y(1+xy) dx=x dy, then f(-1/2) is equal to

  • -2/5

  • -4/5

  • 2/5

  • 2/5

424 Views

623.

If f and ga re differentiable  functions in (0,1) satisfying f(0) =2= g(1), g(0) = 0 and f(1) = 6, then for some c ε] 0,1[

  • 2f'(c) = g'(c)

  • 2f'(c) = 3g'(c)

  • f'(c) = g'(c)

  • f'(c) = g'(c)

149 Views

624.

The population p(t) at time t of a certain mouse species satisfies the differential equation fraction numerator dp space left parenthesis straight t right parenthesis over denominator dt end fraction space equals space 0.5 space left parenthesis straight t right parenthesis space minus 450. if p (0) = 850, then the  time at which the population becomes zero is

  • 2 log 18

  • log 9

  • 1 half space log space 18
  • 1 half space log space 18
493 Views

Advertisement
625.

Consider the function f(x) = |x – 2| + |x – 5|, x ∈ R.
Statement 1: f′(4) = 0
Statement 2: f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5).

  • Statement 1 is false, statement 2 is true

  • Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1

  • Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1

  • Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1

154 Views

626. fraction numerator straight d squared straight x over denominator dy squared end fraction equal to
  • open parentheses fraction numerator straight d squared straight x over denominator dy squared end fraction close parentheses to the power of negative 1 end exponent
  • negative open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses to the power of negative 1 end exponent open parentheses dy over dx close parentheses to the power of negative 3 end exponent
  • open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 2 end exponent
  • open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 2 end exponent
167 Views

627.

The shortest distance between line y - x = 1 and curve x = y2 is

  • √3/4

  • 3√2 /8

  • 8/3√2

  • 8/3√2

349 Views

628. limit as straight x space rightwards arrow 2 of space open parentheses fraction numerator square root of 1 minus cos space open curly brackets 2 left parenthesis straight x minus 2 right parenthesis close curly brackets end root over denominator straight x minus 2 end fraction close parentheses
  • does not exist

  • equal square root of 2

  • equal negative square root of 2

  • equal negative square root of 2

153 Views

Advertisement
Advertisement

629.

Let f : R → R be a continuous function defined
by f(x) = 1/ex + 2e-x
Statement - 1: f(c) = 1/3, for some c ∈ R.
Statement-2: 0 < f(x)≤ fraction numerator 1 over denominator 2 square root of 2 end fraction, for all x ∈ R.

  • Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

  • Statement-1 is true, Statement-2 is true; statement-2 is not a correct explanation for Statement-1.

  • Statement-1 is true, Statement-2 is false.

  • Statement-1 is true, Statement-2 is false.


A.

Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

because space straight f space left parenthesis straight x right parenthesis space equals space fraction numerator 1 over denominator straight e to the power of straight x space plus space begin display style 2 over straight e to the power of straight x end style end fraction
Using comma space AM space greater or equal than space GM
fraction numerator straight e to the power of straight x space plus space begin display style 2 over straight e to the power of straight x end style over denominator 2 end fraction space greater or equal than space open parentheses straight e to the power of straight x. space 2 over straight e to the power of straight x close parentheses to the power of 1 divided by 2 end exponent comma space as space straight e to the power of straight x greater than 0
rightwards double arrow space straight e to the power of straight x space plus space 2 over straight e to the power of straight x space greater or equal than space 2 square root of 2
rightwards double arrow space 0 less than space fraction numerator 1 over denominator straight e to the power of straight x space plus begin display style 2 over straight e to the power of straight x end style end fraction space less or equal than space fraction numerator 1 over denominator 2 square root of 2 end fraction
therefore space 0 less than straight f left parenthesis straight x right parenthesis space less or equal than space fraction numerator 1 over denominator 2 square root of 2 end fraction comma space for space all space straight x element of straight R

Statement I us true and statement I as for some 'c'
f(c) = 1/3
134 Views

Advertisement
630.

The equation of the tangent to the curvestraight y equals straight x space plus space 4 over straight x squared, that is parallel to the x-axis, is

  • y = 0

  • y = 1

  • y = 3

  • y = 3

133 Views

Advertisement