The value of cfrom the Lagrange's mean value theorem for which f(

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

If fx = ax2 - b,    a  x < 12,               x = 1x + 1,       1 < x  2 Then, the value of the pair (a, b) for which f(x) cannot be continuous at x = 1, is

  • (2, 0)

  • (1, - 1)

  • (4, 2)

  • (1, 1)


702.

Which of the following function is not differentiable at x = 1 ?

  • f(x) = tanx - 1 + x - 1

  • f(x) = sinx - 1 - x - 1

  • f(x) = x2 - 1x - 1x - 2

  • None of the above


703.

Using Rolle's theorem, the equation a0xn + a1xn - 1 + ... + an = 0 has atleast one root between 0 and 1, if 

  • a0n + a1n - 1 + ... + an - 1 = 0

  • a0n - 1 + a1n - 2 + ... + an - 2 = 0

  • na0 + (n - 1)a1 + ... + an - 1 = 0

  • a0n + 1 + a1n + ... + an = 0


Advertisement

704.

The value of cfrom the Lagrange's mean value theorem for which f(x) = 25 - x2 in [1, 5], is

  • 5

  • 1

  • 15

  • None of these


C.

15

It is clear that f(x) has a definite and unique value for each x  [1, 5].

Thus, for every point in the interval [1, 5], the value of f(x) exists.

So, f(x) is continuous in the interval [1, 5].

Also, f'(x) = - x25 - x2, hich clearly exists for all x in an open interval (1,5).

Hence, f'(x) is differentiable in (1, 5).

So, there must be a value c  [1, 5] such that

                f'c = f5 - f15 - 1 = 0 - 244                       = 0 - 264 = - 62But           f'(c) = - c25 - c2 - c25 - c2 = - 62 4c2 = 625 - c2 4c2 = 150 - 6c2  10c2 = 150   c2 = 15  c = ± 15     c = 15  1, 5


Advertisement
Advertisement
705.

Let f'(x), be differentiable a. If f(1) = - 2 and f'(x) 2  x [1, 6], then

  • f(6) < 8

  • f(6)  8

  • f(6)  5

  • f(6)  5


706.

If fx = 1 + sinxasinx,  - π6 < x < 0b,                                  x = 0etan2xtan3x,               0 < x < - π6

then the value of a and b, if f is continuous at x = 0, are respectively

  • 23, 32

  • 23, e23

  • 32, e32

  • None of these


707.

If f(x) = mx + 1,         x  π2sinx + n,     x > π2 is continuous at x = π2, then

  • m = 1, n = 0

  • m = 2 + 1

  • n = mπ2

  • m = n = π2


708.

If f(x) = x2,         x  02 sinx, x > 0, then x = 0 is

  • point of minima

  • point of maxima

  • point of discontinuity

  • None of the above


Advertisement
709.

If y = x + y + x + y + ... , then dydx is equal to

  • y + xy2 - 2x

  • y3 - x2y2 - 2xy - 1

  • y3 + x2y2 - x

  • None of these


710.

If f : R  R is defined by

fx = 2sinx - sin2x2xcosx, if x 0a, if x = 0,           if x = 0

then the value of a so that f is continuous at 0 is

  • 2

  • 1

  • - 1

  • 0


Advertisement