If fx = logex3 - x3 + x13, the

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

741.

If the function f(x) = x,              if x  1cx + k,     if 1 < x < 4- 2x,       if x  4 is continuous everywhere, then the values of c and k are respectively.

  • - 3, - 5

  • - 3, 5

  • - 3, - 4

  • - 3, 4


742.

If y = 5tanx, then dydx at x = π4 is equal to

  • 5log5

  • 10log5

  • 0

  • log52


743.

If y = sin-1x and z = cos-11 - x2, then dydz is equal to

  • x1 - x2

  • 12

  • - x1 - x2

  • 1


744.

If u = 2(t - sin(t)) and v = 2 (1 - cos(t)), then dvdu at t = 2π3 is equal to

  • 3

  • - 3

  • 23

  • 13


Advertisement
Advertisement

745.

If fx = logex3 - x3 + x13, then f'(1) is equal to

  • 34

  • 23

  • 13

  • 12


A.

34

Given, f(x) = logex3 - x3 + x13

 fx = logex + 13log3 - x - log3 + xOn differentiating w.r.t. x, we getf'x = 1ex × ex + 13- 13 - x - 13 +x       = 1 + 13- 13 - x - 13 + x       = 1 + 13- 3 - x - 3 + x9 - x2       = 1 + - 69 - x2

At x = 1

f'1 = 1 + 13- 69 - 12       = 1 + 13- 68 = 1 - 14 = 34


Advertisement
746.

If y = logx2, then dydx at x = e is equal to

  • 2

  • e2

  • e

  • 2e


747.

If yx = 2x, then dydx is equal to

  • yxlog2y

  • xylog2y

  • yxlogy2

  • xylogy2


748.

If x2 + 2xy + 2y2 = 1, then dydx  at the point where y = 1 is equal to

  • 1

  • 2

  • - 1

  • 0


Advertisement
749.

Let f(x) = x3 - x + p (0  x  2) where p is a constant. The value c of mean value theorem is

  • 32

  • 63

  • 33

  • 233


750.

If the function fx = x2 - k + 2x +2kx - 2 for x  22                               for x = 2 is continuous at x = 2, then k is equal to

  • - 12

  • - 1

  • 0

  • 12


Advertisement