If a particle is moving such that the velocity acquired is propor

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

771.

If f(x) = x2 - 9x - 3,    if x  32x + k,    otherwise is continuous at x = 3, then k is equal to :

  • 3

  • 0

  • - 6

  • 16


772.

ddxxx is equal to :

  • logx

  • logex

  • xxlogx

  • xxlogex


773.

If the displacements of a particle at time t is given by s2 = at2 + 2bt + c, then acceleration varies as :

  • 1s2

  • 1s

  • 1s3

  • s3


774.

Let f(x) be twice differentiable such that f''(x) = - f(x), f'(x) = g(x), where f'(x) and f''(x) represent the first and second derivatives of f(x) respectively. Also, if h(x) = [f(x)]2 + [g(x)]2 and h(S) = 5, then h(10) is equal to :

  • 3

  • 10

  • 13

  • 5


Advertisement
Advertisement

775.

If a particle is moving such that the velocity acquired is proportional to the square root of the distance covered, then its acceleration is :

  • a constant

  •  s2

  •  1s2

  •  s


A.

a constant

Given velocity v  s v = ks  dvdt = k2sdsdt a = k22

Thus, if velocity acquired by the particle is proportional to the square root of the distance covered, then its acceleration is a constant.


Advertisement
776.

If f(x) = 2x - 11 + x - 1, - 1  x < , x  0k,                         x = 0 is continuous everywhere, then k is equal to:

  • 12log2

  • log4

  • log8

  • log2


777.

If sin-1x + sin-1y = π2, then dydx is equal to :

  • xy

  • - xy

  • yx

  • - yx


778.

If g(x) = min (x, x) where x is a real number, then :

  • g(x) is an increasing function

  • g(x) is a decreasing function

  • g(x) is a constant function

  • g(x) is a continuous function except at x = 0


Advertisement
779.

If y = 2x . 32x - 1, then d2ydx2 is equal to :

  • log2log3

  • log18

  • log182y2

  • log18y


780.

If y = x + x2 + x3 + ... to  where x < 1, then for y < 1dxdy is equal to :

  • y + y2 + y3 + ... to 

  • 1 - y + y2 - y3 + ... to 

  • 1 - 2y + 3y- ... to 

  • 1 + 2y + 3y2 + ... to 


Advertisement