If f(x) is continuous on - π, π, wherefx =&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

801.

Let f R  R : be differentiable at c  R  and f(c) = 0. If g(x) = fx, then at x = c , g is

  • not differentiable

  • differentiable if f'(c) = 0

  • not differentiable if f'(c) = 0

  • differentiable if f'(c)  0


Advertisement

802.

If f(x) is continuous on - π, π, where

fx = - 2sinx,      for - π  x  - π2αsinx + β,   for - π2 < x < π2cosx,            for π2  x  π

then α and β are

  • - 1, - 1

  • 1, - 1

  • 1, 1

  • - 1, 1


B.

1, - 1

Given,fx = - 2sinx,      for - π  x  - π2αsinx + β,   for - π2 < x < π2cosx,            for π2  x  πAt x = π2,LHS = fπ2 - 0 = limxπ+2αsinx + β= limh0αsinπ2 - h + β= α + βand fπ2 = cosπ2 = 0 fx is continuous at x = π2.

 α + β = 0     ...i

At x = - π2,RHL = f- π2 + 0 = limx - π2αsinx + β        = limh0αsin- π2 + h + β        = - α + βand f- π2 = - 2sinπ2 = - 2 fx is continuous at x = - π2.

 - α + β = 0     ...ii

on solving Eqs. (i) and (ii), we getα = 1, β = - 1

 


Advertisement
803.

If f(x) = log1 - 3x1 +3x,      for x  0k,                                for x = 0 continuous at x = 0, then k is equal to

  • - 2

  • 2

  • 1

  • - 1


804.

If x = log1 + t2 and y = t - tan-1t. Then, dydx is equal to

  • ex - 1

  • t2 - 1

  • ex - 12

  • ex - y


Advertisement
805.

ddxseccos-1x8 is equal to

  • 18

  • - 18

  • 8x2

  • 8x2


806.

If f(x) = 1 + cos2x2, then f'π2 is

  • π6

  • - π6

  • 16

  • π6


807.

If y = asin3θ and x = acos3θ, then at θ = π3, dydx is equal to

  • π6

  • - 3

  • - 13

  • 3


808.

2y0 is equal to

  • 2y2 - 2y1 - y0

  • y2 - 2y1 - y0

  • 2y2 - 2y1 + y0

  • y2 - 2y1 + y0


Advertisement
809.

23ex is equal to

  • 3ex

  • 3(h - 1)ex

  • 3(eh - 1)2ex

  • None of the above


810.

The value of 2Ex2 at the interval h = 1 is

  • 0

  • 1

  • 2

  • 4


Advertisement