If y = asin3θ and x = acos3θ, then at&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

801.

Let f R  R : be differentiable at c  R  and f(c) = 0. If g(x) = fx, then at x = c , g is

  • not differentiable

  • differentiable if f'(c) = 0

  • not differentiable if f'(c) = 0

  • differentiable if f'(c)  0


802.

If f(x) is continuous on - π, π, where

fx = - 2sinx,      for - π  x  - π2αsinx + β,   for - π2 < x < π2cosx,            for π2  x  π

then α and β are

  • - 1, - 1

  • 1, - 1

  • 1, 1

  • - 1, 1


803.

If f(x) = log1 - 3x1 +3x,      for x  0k,                                for x = 0 continuous at x = 0, then k is equal to

  • - 2

  • 2

  • 1

  • - 1


804.

If x = log1 + t2 and y = t - tan-1t. Then, dydx is equal to

  • ex - 1

  • t2 - 1

  • ex - 12

  • ex - y


Advertisement
805.

ddxseccos-1x8 is equal to

  • 18

  • - 18

  • 8x2

  • 8x2


806.

If f(x) = 1 + cos2x2, then f'π2 is

  • π6

  • - π6

  • 16

  • π6


Advertisement

807.

If y = asin3θ and x = acos3θ, then at θ = π3, dydx is equal to

  • π6

  • - 3

  • - 13

  • 3


B.

- 3

Given, y = asin3θ and x = acos3θOn differentiating w.r.t. θ, we getdy = 3asin2θcosθand dx = - 3acos2θsinθ   dydx = dydy = 3asin2θcosθ- 3acos2θsinθ             = - sinθcosθ =- tanθAt θ = π3,        dydx = - tanπ3 = - 3


Advertisement
808.

2y0 is equal to

  • 2y2 - 2y1 - y0

  • y2 - 2y1 - y0

  • 2y2 - 2y1 + y0

  • y2 - 2y1 + y0


Advertisement
809.

23ex is equal to

  • 3ex

  • 3(h - 1)ex

  • 3(eh - 1)2ex

  • None of the above


810.

The value of 2Ex2 at the interval h = 1 is

  • 0

  • 1

  • 2

  • 4


Advertisement