If y2 = ax2 + bx + c, where a, b, c are constants, then y3d2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

811.

The value of f at x = 0 so that function fx = 2x - 2- xx0, x  0 is continuous at x = 0, is

  • 0

  • log(2)

  • 4

  • log(4)


812.

If y = ax . b2x - 1, then d2ydx2 is

  • y2logab2

  • y . logab22

  • y2

  • y . loga2b2


813.

If f(x) = sin-12x1 + x2, then f(x) is differentiable on

  • [- 1, 1]

  • R - {- 1, 1}

  • R - (- 1, 1)

  • None of these


814.

The function f (x) = e- x is

  • continuous everywhere but not differentiable at x = 0

  • continuous and differentiable everywhere

  • not continuous at x = 0

  • None of the above


Advertisement
Advertisement

815.

If y2 = ax2 + bx + c, where a, b, c are constants, then y3d2ydx2 is equal to

  • a constant

  • a function of x

  • a function of y

  • a function of x and y both


A.

a constant

Given, y2 = ax2 + bx + cOn differentiating w.r.t. x, we get2ydydx = 2ax + bAgain differentiating w.r.t. x, we get2dydx2 +2yd2ydx2 = 2a d2ydx2 = a - dydx2 yd2ydx2 = a - 2ax + b2y2 yd2ydx2 = 4ay2 - 2ax + b24y2 4y3d2ydx2 = 4aax2 + bx + c - 4a2x2 + 4abx + b2 4y3d2ydx2 = 4ac - b2 y3d2ydx2 = 4ac - b24 = constant


Advertisement
816.

The set of points where the function fx = x - 1ex is differentiable, is

  • R

  • R - {1}

  • R - {- 1}

  • R - {0}


817.

If x = ϕt, y = ψt, then d2ydx2 is equal to

  • ϕ'ψ'' - ψ'ϕ''ϕ'2

  • ϕ'ψ'' - ψ'ϕ''ϕ'3

  • ϕ''ψ''

  • ψ''ϕ''


818.

If fx = xsin1x, x  0k,           x  = 0 is continuous at x = 0, then the value of k is

  • 1

  • - 1

  • 0

  • 2


Advertisement
819.

If x = 1 - t21 + t2 and y = 2at1 +t2, then dydx is equal to

  • a1 - t22t

  • at2 - 12t

  • at2 + 12t

  • at2 - 1t


820.

The value of logfx + 23x is

  • log1 + fxfx + 4 . 3x

  • log1 + fxfx + 3x

  • logfx1 + fx + 4 . 3x

  • logfx1 + fx + 3x


Advertisement