Let f(x) = αxsinπx2    for 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

841.

If f(x) = = logsec2xcot2x for x  0= K                         for x = 0 is continuous at x = 0, then K is

  • e- 1

  • 1

  • e

  • 0


842.

If fx = x for  x 0= 0 for x > 0, then f(x) at x = 0 is

  • continuous but not differentiable

  • not continuous but differentiable

  • continuous and differentiable

  • not continuous and not differentiable


843.

Let f(x) = - 2sinx            if x  - π2Asinx + B if - π2 < x < π2cosx                 if x  π2

For what values of A and B, the function f(x) is continuous throughout the real line ?

  • A = - 1, B = 1

  • A = - 1, B = - 1

  • A = 1, B = - 1

  • A = 1, B = 1


Advertisement

844.

Let f(x) = αxsinπx2    for x  21                      for x = 0

where αx is such that limx0αx = .

Then the function f(x) is contonuous at x = 0 if αx is chosen as

  • 2πx

  • 1x2

  • 2πx2

     

  • 1x


A.

2πx

Given,fx = αxsinπx2    for x  21                      for x = 0    ...iFor f(x)to be continuous at x = 0              limx0fx = f0From Eq (i),   f(0) = 1 For f(x)to be continuous at x = 0,limx0αxsinπx2 =1The above limlt is equal to 1, when                        αx = 2πxi.e., limx0sinπx2πx2 = 1      limx0 sinθθ = 1Hence, option  (a) αx = 2πx is correct


Advertisement
Advertisement
845.

Let the equation ofa curve is given in implicit form as y = tanx + y. Then d2ydx2 in terms of y is

  • 21 + y2y6

  • - 21 + y2y6

  • - 21 + y2y5

  • 21 + y22y5


846.

The function f(x) = xtan-11x for x  0, f(0) = 0 is

  • differentiable at x = 0

  • neither continuous at x = 0 nor differentiable at x = 0

  • not continuous at x = 0

  • continuous at x = 0 but not differentiable at x = 0


847.

If function f(x) = xsin1x; x  0a;           x = 0 is continuous at x = 0, then the value of a is

  • 0

  • 1

  • - 1

  • None of these


848.

At which point the function f(x) = x2x, where [.] is greatest integer function, is discontinuous ?

  • Only positve integers

  • All postive and negative integers and (0,1)

  • all rational numbers

  • None of these


Advertisement
849.

The function y = 2sinx is continuous for any x but it is not differentiable at

  • only x = 0

  • only x = π

  • only x = π2

  • x =  k is integer


850.

If y = elog1 + x +x2 + x3 + , where x < 1, then dydx is equal to

  • - 11 - x2

  • 11 - x2

  • 11 + x2

  • None of these


Advertisement