Let f (x + y) = f(x) + f(y) for all x and y. If the function f(x)

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

851.

Let f (x + y) = f(x) + f(y) for all x and y. If the function f(x) is continuous at x = 0, then f(x) is continuous

  • only at x = 0

  • at x  R - 0

  • for all x

  • None of these


D.

None of these

Given, fx + y = fx + fy; for all x and ySince, fx is continuous at x = 0, we have limx0fx = f0.To show that f(x) is continuous at any point a, we shall prove that             limxafx = fa limh0fa+ h = faIndeed lim  h0fx = limh0fa + fh                          = fa + limh0fh = fa + f0                          = fa + 0 = fa


Advertisement
852.

Let fx = x2sin1x, x  00,             x = 0. Then, f(x) is continuous but not differentiable at x = 0, if

  • n  0, 1

  • n  [1, )

  • n  - , 0

  • n = 0


853.

The function f(x) = x2a,             0  x < 1a,                  1  x < 22b2 - 4bx2, 2  x <  is continuous for 0  x < ,then the most suitable values of a and b are

  • a = 1, b = - 1

  • a = - 1, b = 1 + 2

  • a = - 1, b = 1

  • None of the above


854.

If f(x) = 1,                  x < 01 + sinx,    0  x < π2,then at x = 0 the derivative f'(x) is

  • 1

  • 0

  • infinite

  • not defined


Advertisement
855.

If f(x) = 1 - cos4xx2,          when x < 0         a,                   when x = 0x16 + x - 4, when x > 0 is continuous at x = 0, then the value of a will be

  • 8

  • - 8

  • 4

  • None of these


856.

If f is a real-valued differentiable function satisfying fx - fy  (x - y)2 , x, y  R and f(0) = 0, then f(1) is equal to

  • 2

  • 1

  • - 1

  • 0


857.

Let f(x) = - 2sinx,     - π  x  - π2asinx + b,    - π2  x  π2cosx,                  π2  x  π. If f(x) is continuous on - π, π, then

  • a = 1, b = 1

  • a = - 1, b = - 1

  • a = - 1, b = 1

  • a = 1, b = - 1


858.

If f(x) = x1 + exp1x ,     x  00                     ,     x = 0, then f(x) at x = 0 is

  • continuous

  • not continuous

  • differentiable

  • not differentiable


Advertisement
859.

If f(x) = x - 2 and g(x) = f(f(x)), then dgxdx for x > 10 is

  • 1 or - 1

  • 1

  • - 1

  • None of these


860.

If y = sin-11 + x + 1 - x2, then the value of dydx at x = 0 is

  • 1/2

  • - 1/2

  • 0

  • None of these


Advertisement