If f(x) = beax + aebx, then f''(0) is equal to from Mathematics

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

901.

If f(x) = beax + aebx, then f''(0) is equal to

  • 0

  • 2ab

  • ab(a + b)

  • ab


C.

ab(a + b)

Given, fx = beax + aebxOn differentiating w.r.t. x, we get       f'x = ab eax + ab ebxAgain, differentiating, we get      f''x = a2beax +ab2ebx f''0 = a2b + ab2              = aba + b


Advertisement
902.

Th function f(x) = log1 +ax - log1 - bxxis not defined at x = 0. The value which should be assigned to f at x = 0 so that it is continuousat x = 0 is 

  • a - b

  • a + b

  • log(a) + log(b)

  • 0


903.

If f(x) = 1 + nx + nn - 12x2 + nn - 1n - 26x3 + ... + xn, then f''(1) is equal to

  • n(n - 1)2n - 1

  • (n - 1)2n - 1

  • n(n - 1)2n - 2

  • n(n - 1)2n


904.

If f(x) = logx2logex, then f'(x) at x = e is

  • 1

  • 1e

  • 12e

  • 0


Advertisement
905.

If f(x) = gx + g- x2 + 2hx + h- x- 1 where g and h are differentiable function, then f'(0)

  • 1

  • 12

  • 32

  • 0


906.

The function f(x) = [x], where [x] denotes the greatest integer not greater than x , is

  • continuous for all non-integral values of x

  • continuous only at positive integral values of x

  • continuous for all real values of x

  • continuous only at rational values of x


907.

If the three function f(x), g(x) and h(x) are such that h(x) = f(x) g(x) and f'(x) g'(x) = c where c is constant, then

f''xfx + g''xgx + 2cfx . gx is equal to

  • h'(x) . h''(x)

  • hxh''x

  • h''xhx

  • hxh'x


908.

The derivative of eax cos(bx) with respect x is reax cos(bx) tan-1ba when a>0,b>0, then a value of r, is

  • a2 + b2

  • 1ab

  • ab

  • a + b


Advertisement
909.

The function f(x) = x - 2 +x is

  • differentiable at both x = 2 and x = 0

  • differentiable at x = 2 but not at x = 0

  • continuous at x = 2 but not at x = 0

  • continuous at both x = 2and x = 0


910.

If y = tan-1x2 - 1, then the ratio d2ydx2 : dydx is

  • xx2 - 11 - 2x2

  • 1 - 2x2xx2 - 1

  • 1 + 2x2xx2 + 1

  • xx2 + 11 - 2x2


Advertisement