If x + y = tan-1y and d2ydx2&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

921.

If x + y = tan-1y and d2ydx2 = fydydx, then f(y) is equal to

  • - 2y3

  • 2y3

  • 1y

  • - 1y


B.

2y3

Given, x + y = tan-1yOn differentiating w.r t x, we get1 + dydx = 11 + y2dydx 1 - 11 + y2dydx = - 1           y21 + y2dydx = - 1                       dydx = - 1 + y2y2 = - 1 - 1y2Again, differentiating w.r.t. x, we get     d2ydx2  = 0 + 2y3dydx d2ydx2  = 2y3dydx but given      d2ydx2 = fydydx2y3On comparing, we get       fy = 2y3


Advertisement
922.

If f(x) = 2a - x when - a < x <a3x - 2a when a  x. Then, which of the following is true ?

  • f(x) is not differentiable at x = a

  • f(x) is discontinuous at x = a

  • f(x) is continuous for all x < a

  • f(x) is differentiable for all x  a


923.

If f(x) = cos-11132cosx - 3sinx. Then f'(0.5) is equal to

  • 0.5

  • 1

  • 0

  • - 1


924.

If f(x) is a function such that f"(a) + f'(a) = 0 and g(x) =[f(x)]2 + [f'(x)]2 and g(3) = 8, then g(8) is equal to

  • 0

  • 3

  • 5

  • 8


Advertisement
925.

If f(a) = f'(x) + f"(x) + f'"(x) + ... and f(0) = 1, then f(x) is equal to

  • ex/2

  • ex

  • e2x

  • e4x


926.

If f(x) = x3 and g(x) = x3 - 4x in - 2  x , then consider the statements

(i) f(x) and g(x) satisfy mean value theorem.

(ii) f(x) and g(x) both satisfy Rolle's theorem.

(iii)  Only g(x) satisfies Rolle's theorem.

Of these statements.

  • (i) and (ii) are correct

  • only (i) is correct

  • None is correct

  • (i) and (iii) are correct


927.

If the function f(x) defined by fx = x100100 + x9999 + ... + x22 +x+1, then f'(0) is equal to

  • 100f'(0)

  • 100

  • 1

  • - 1


928.

The function represented by the following graph is

  • continuous but not differentiable at x = 1

  • differentiable but not continuous at x = 1

  • continuous and differentiable at x = 1

  • neither continuous nor differentiable at x = 1


Advertisement
929.

If f(x) = 3sinπx5x, x  02k,            x = 0 is continuous at x = 0, then the value k is

  • π10

  • 3π10

  • 3π2

  • 3π5


930.

If f(x) = 3x - 8, if x  52k,        if x > 5 is continuous, then find k.

  • 4/7

  • 2/7

  • 7/2

  • 3/7


Advertisement