The two curves x3 - 3xy2 + 2 = 0 and 3x2y - y3 = 2 from Mathemat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

931.

The function f(x) = [x], where [x] denotes greatest integer function, is continuous at

  • 1

  • 4

  • 1.5

  • - 2


932.

If y = log1 - x21 + x2, then dydx is equal to

  • 11 - x4

  • - 4x1 - x4

  • - 4x31 - x4

  • 4x31 - x4


Advertisement

933.

The two curves x3 - 3xy2 + 2 = 0 and 3x2y - y3 = 2

  • cut at angle π/3

  • touch each other

  • cut at angle π4

  • cut at right angle


D.

cut at right angle

On differentiating x3 - 3xy2 + 2 = 0 w.r.t. x, we get3x2 - 3y2 + 2xyy' = 0  3x2 - 3y2 - 6xyy' = 0 y' = 3x2 - 3y26xy = m1On differentating 3x2y - y3 = 2 w.r.t. x, we get   32xy + x2y' - 3y2y' = 0 6xy + 3x2y' - 3y2y' = 0 y'3x2 - 3y2 + 6xy = 0       y' = - 6xy3x2 - 3y2 = m2Now, m1 × m2 = 3x2 - 3y26xy- 6xy3x2 - 3y2 = - 1Hence, both curves cut at right angle.


Advertisement
934.

If y = esin-1t2 - 1 and x = esec-11t2 - 1, then dydx is equal to

  • xy

  • - yx

  • yx

  • - xy


Advertisement
935.

If xy = ex - y, then dydx is equal to

  • logxlogx - y

  • exxx - y

  • logx1 + logx2

  • 1y - 1x - y


936.

The function f(x) = [x], where [x] is the greatest integer function, is continuous at

  • 1.5

  • 4

  • 1

  • - 2


937.

If tan-1x2 + y2 = α, then dydx is equal to

  • - xy

  • xy

  • xy

  • - xy


938.

If y = fxgxhxlmnabc, then dydx is equal to

  • f'xg'xh'xlmnabc

  • lmnfxgxhxabc

  • f'xlag'xmbh'xnc

  • lmnabcf'xg'xh'x


Advertisement
939.

If f(x) = kx2 if x  23    if x > 2is continuous at x = 2, then the value of k is

  • 3/4

  • 4

  • 4/3

  • 3


940.

If y = log(log(x)), then d2ydx2 is equal to

  • - 1 + logxx2logx

  • - 1 + logxxlogx2

  • 1 + logxxlogx2

  • 1 + logxx2logx


Advertisement