The value of m for which the function f(x) = mx2, x&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

941.

If y = tan-1sinx + cosxcosx - sinx, then dydx is equal to

  • 1/2

  • 0

  • π4

  • 1


942.

The derivative of cos-12x2 - 1 w.r.t. cos-1x is

  • 1 - x2

  • 2x

  • 121 - x2

  • 2


943.

The value of c in mean value theorem for the function f(x) = x2 in [2, 4] is

  • 3

  • 7/2

  • 4

  • 2


944.

If the function f(x) = 1 + sinπx2, for -  < x  1ax +b,           for 1 < x <36tanπx12,      for 3  x < 6 is continuous in the interval (- , 6), then the values of a and b are respectively

  • 0, 2

  • 1, 1

  • 2, 0

  • 2, 1


Advertisement
Advertisement

945.

The value of m for which the function f(x) = mx2, x  1  2x, x > 1, is differentiable at x = 1, is

  • 0

  • 1

  • 2

  • does not exist


D.

does not exist

Given, fx = mx2, x  1  2x, x > 1and f(x) is differentiable at x = 1 RHD = LHD     LHD = limh0f1 - h - f1- h             = limh0m1 - h2 - m- h             = limh0m + mh2 - 2mh - m- h             = limh0- mh + 2m = 2mand RHD = limh0f1 + h - f1h               = limh021 + h - mh

For m = 0, RHD is not defined.

For m = 1, RHD is not defined.

and for m = 2, LHD = 4 and RHD = 2.

Thus, no value of m does exist.


Advertisement
946.

If y = (1 + x1/4)(1 + x1/2)(1 - x1/4), then dy/dx is equal to

  • 1

  • - 1

  • x

  • x


947.

If y = loglogx, then eydydx is equal to

  • 1xlogx

  • 1x

  • 1logx

  • ey


948.

For the function f(x) = x2 - 6x + 8, 2  x  4, the value of x for which f'(x) vanishes, is

  • 9/4

  • 5/2

  • 3

  • 7/2


Advertisement
949.

If y = x + 1 + x2n, then 1 + x2d2ydx2 + xdydx is equal to

  • n2y

  • - n2y

  • - y

  • 2x2y


950.

If xy = ex - y, then dydx is

  • 1 + x1 + logx

  • 1 - logx1 + logx

  • not defined

  • logx1 + logx2


Advertisement