The value of ddxsintan-1ex at x = 0  is from Math

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1001.

One root of the equation x2 - 4x+ 1 = 0 is between 1 and 2. The value ofthis root using Newton-Raphson method will be

  • 1.775

  • 1.850

  • 1.875

  • 1.950


1002.

The point/points of discontinuity of the function f(x) = x + 3,     if x  - 3- 2x,         if - 3 < x < 36x + 2,      if x  3 is/are

  • 3, - 3

  • 3

  • - 3

  • None of these


Advertisement

1003.

The value of ddxsintan-1ex at x = 0  is

  • 0

  • - 2

  • - 122

  • - 12


C.

- 122

We have, ddxsintan-1ex        = - costan-1e-x × 11 + e-2x × e-xAt x = 0, we have- costan-1e0 × 11 + e0 × e0       = - costan-11 × 12 × 1       = cosπ4 × 12       = - 122


Advertisement
1004.

If f(x) = x2 - 10x + 25x2 - 7x + 10 and f is continuous at x = 5, then f(5) is equal to

  • 0

  • 5

  • 10

  • 25


Advertisement
1005.

If h(x) = xxx, then at x = 1, h'xhx is equal to

  • h(x)

  • 1hx

  • 1 + loghx

  • - loghx


1006.

ddxsin-13x - 4x3 is equal to

  • 34 - x2

  • 31 - x2

  • 14 - x2

  • - 14 - x2


1007.

If f(x) = x2x + a, then f''(a) is equal to

  • 4a

  • 18a

  • 14a

  • 8a


1008.

If u = ex2 - y2, then

  • xux = yuy

  • yux = xyy

  • yux + xuy = 0

  • x2uy + y2ux = 0


Advertisement
1009.

If u = xy2tan-1yx, then xux + yuy is equal to

  • 2u

  • u

  • 3u

  • 13u


1010.

If: R  R is defined by f (x) = x - [x], where[x] is the greatest integer not exceeding x, then the set of discontinuous of f is

  • the empty set

  • R

  • Z

  • N


Advertisement