If f : R → R defined byf(

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1041.

x = cos-111 +t2, y = sin-1t1 +t2  dydx = ?

  • 0

  • tan(t)

  • 1

  • sin(t)cos(t)


1042.

ddxa tan-1x + blogx - 1x + 1 = 1x4 - 1  a - 2b = ?

  • 1

  • 0

  • - 1

  • 2


1043.

y = easin-1x  1 - x2yn +2 - 2n +1xyn +1 is equal to

  • -n2 +a2yn

  • n2 -a2yn

  • n2 +a2yn

  • -n2 - a2yn


Advertisement

1044.

If f : R  R defined byf(x) = 1 + 3x2 - cos2xx2, for x  0k, for x= 0is continuous at x = 0, then k is equal to

  • 1

  • 5

  • 6

  • 0


B.

5

f(x) = 1 + 3x2 - cos2xx2, for x  0k, for x= 0RHLf(0 +h) = limh01 + 30 + h2 - cos20 + h0 + h2                = limh0  1 +3h2 - cos2hh2                = limh0 1 +3h2 - 1 - 2sin2hh2                = limh0 1 +3h2 - 1 + 2sin2hh2                =  limh03 + 2sin2hh                = 3 + 2 . limh0sinhh2                = 3 + 2 . 12       limx0sinxx = 1                = 3 + 2 = 5

LHLf(0 - h) = limh01 + 30 - h2 - cos20 - h0 - h2                = limh0 1 + 3h2 - cos2hh2Since, the function is continuous at x = 0, then LHL = RHL = f0 = k  k = 5


Advertisement
Advertisement
1045.

If f(x) = cosxcos2x. . . cosnx, then f'(x) + r = 1n rtanrxfx = ?

  • f(x)

  • 0

  • - f(x)

  • 2f(x)


1046.

If y = cos-1a2 - x2a2 + x2 + sin-12axa2 + x2,then dydx = ?

  • ax2 + a2

  • 2ax2 + a2

  • 4ax2 + a2

  • a2x2 + a2


1047.

If fx = sinx + cosx,then fπ4fivπ4 = ?

  • 1

  • 2

  • 3

  • 4


1048.

If y = sinmsin-1x, then 1 - x2y2 - xy1 = ?Here, yn denotes dnydxn

  • m2y

  • - m2y

  • 2m2y

  • - 2m2y


Advertisement
1049.

If u = sin-1x4 + y4x + y, then xux + yuy = ?

  • 3u

  • 4u

  • 3sin(u)

  • 3tan(u)


1050.

If y = logexx and z = logex, then d2ydx2 + dydz = ?

  • e - z

  • 2e - z

  • ze - z

  • - e - z


Advertisement