Solve: from Mathematics Determinants

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

121.

Solve the equation
open vertical bar table row cell straight x plus straight a end cell cell space straight x end cell cell space straight x end cell row straight x cell space straight x plus straight a end cell cell space straight x end cell row straight x straight x cell space straight x plus straight a end cell end table close vertical bar space equals space 0 comma space space space straight a not equal to space 0.

72 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

122.

Solve:
open vertical bar table row cell straight x plus 1 end cell 2 3 row 3 cell straight x plus 2 end cell 1 row 1 2 cell straight x plus 3 end cell end table close vertical bar space equals 0


The given equation is
      open vertical bar table row cell straight x plus 1 end cell 2 cell space space space 3 end cell row 3 cell straight x plus 2 end cell cell space space space space 1 end cell row 1 2 cell straight x plus 3 end cell end table close vertical bar space equals space 0

or   open vertical bar table row cell straight x plus 6 end cell cell space 2 end cell 3 row cell straight x plus 6 end cell cell space straight x plus 2 end cell 1 row cell straight x plus 6 end cell 2 cell straight x plus 3 end cell end table close vertical bar space equals space 0 comma space space by space straight C subscript 1 space rightwards arrow space straight C subscript 1 space plus space straight C subscript 2 plus straight C subscript 3 

or  left parenthesis straight x plus 6 right parenthesis space equals space open vertical bar table row 1 cell space space space space 2 end cell cell space space 3 end cell row 1 cell space space space space straight x plus 2 end cell cell space space 1 end cell row 1 2 cell space space straight x plus 3 end cell end table close vertical bar space equals space 0 

  or space space left parenthesis straight x plus 6 right parenthesis space open vertical bar table row 1 cell space space space 2 end cell cell space space 3 end cell row 0 cell space space space straight x end cell cell space space minus 2 end cell row 0 cell space space 0 end cell cell space space straight x end cell end table close vertical bar space equals space 0 comma space space by space straight R subscript 1 space rightwards arrow space straight R subscript 2 space minus space straight R subscript 1 comma space space space straight R subscript 3 space rightwards arrow space straight R subscript 3 space minus straight R subscript 1
or space space left parenthesis straight x plus 6 right parenthesis thin space left square bracket left parenthesis 1 right parenthesis thin space left parenthesis straight x right parenthesis thin space left parenthesis straight x right parenthesis right square bracket space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets Product space of space diagonal space elements close square brackets
or space space space straight x squared left parenthesis straight x plus 6 right parenthesis space equals space 0
therefore space space space space straight x space equals space 0 comma space space 0 comma space space minus 6
therefore space space space space roots space of space given space equation space are space 0 comma space minus 6.

69 Views

Advertisement
123.

Prove that:
open vertical bar table row cell straight a squared plus 1 end cell cell straight a space straight b end cell cell straight a space straight c end cell row cell straight a space straight b end cell cell straight b squared plus 1 end cell cell straight b space straight c end cell row cell straight a space straight c end cell cell straight b space straight c end cell cell straight c squared plus 1 end cell end table close vertical bar space equals space 1 plus straight a squared plus straight b squared plus straight c squared.

94 Views

 Multiple Choice QuestionsShort Answer Type

124.

If x, y, z are different and
increment space equals space open vertical bar table row straight x cell space space space space straight x squared end cell cell space 1 plus straight x cubed end cell row straight y cell space space space straight y squared end cell cell space 1 plus straight y cubed end cell row straight z cell space space straight z squared end cell cell space 1 plus straight z cubed end cell end table close vertical bar space equals space 0 comma space space then space show space that space 1 plus xyz space equals 0

70 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

125.

Prove that:
open vertical bar table row straight x cell space space space straight x squared end cell cell space space 1 plus px cubed end cell row straight y cell space space straight y squared end cell cell space space 1 plus py cubed end cell row straight z cell space space straight z squared end cell cell space space 1 plus pz cubed end cell end table close vertical bar space equals space left parenthesis 1 plus pxyz right parenthesis thin space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis
where p is any scalar.

76 Views

 Multiple Choice QuestionsShort Answer Type

126.

If space open vertical bar table row straight a cell space space straight a cubed end cell cell space space straight a to the power of 4 minus 1 end cell row straight b cell space straight b cubed end cell cell space space straight b to the power of 4 minus 1 end cell row straight c cell space straight c cubed end cell cell space space straight c to the power of 4 minus 1 end cell end table close vertical bar space equals space 0 comma
show that
a + b + c = abc(ab + bc + ca) where a , b , c are all different.

72 Views

127.

Let the three digit numbers A28,3B9 and 62C where A, B, and C are any integers between 0 and 9, be divisible by a fixed integer k. Show that the determinant
open vertical bar table row straight A cell space space 3 end cell cell space space space 6 end cell row 8 cell space 9 end cell cell space space straight C end cell row 2 cell space straight B end cell cell space space 2 end cell end table close vertical bar
is divisible by k.

151 Views

 Multiple Choice QuestionsLong Answer Type

128.

Prove that:
open vertical bar table row cell left parenthesis straight b plus straight c right parenthesis squared end cell cell straight a squared end cell cell straight a squared end cell row cell straight b squared end cell cell left parenthesis straight c plus straight a right parenthesis squared end cell cell straight b squared end cell row cell straight c squared end cell cell straight c squared end cell cell left parenthesis straight a plus straight b right parenthesis squared end cell end table close vertical bar space equals space 2 space abc space left parenthesis straight a plus straight b plus straight c right parenthesis cubed.

98 Views

Advertisement
129.

Prove that:
open vertical bar table row cell negative 2 straight a end cell cell space space space space straight a plus straight b end cell cell space space space straight a plus straight c end cell row cell straight b plus straight a end cell cell space space minus 2 straight b end cell cell space space space straight b plus straight c end cell row cell straight c plus straight a end cell cell space space straight c plus straight b end cell cell space space minus 2 straight c end cell end table close vertical bar space equals space 4 left parenthesis straight a plus straight b right parenthesis thin space left parenthesis straight b plus straight c right parenthesis thin space left parenthesis straight c plus straight a right parenthesis.


74 Views

 Multiple Choice QuestionsMultiple Choice Questions

130.

Let A be a square matrix of order 3 × 3, then | kA | is equal to 


  • k | A |
  • k2 | A |
  • 3| A |
  • 3| A |
87 Views

Advertisement