For the matrix  find the numbers a and b such that A2 + aA +

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

181.

If straight A space equals open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close square brackets comma space show that straight A squared minus 6 straight A plus 17 space straight I space equals space straight O. Hence find straight A to the power of negative 1 end exponent.

84 Views

182.

For the matrix straight A space equals space open square brackets table row 2 cell space space space minus 1 end cell row 3 cell space space space space space space 2 end cell end table close square brackets comma show that A2 – 4 A + 7 I = O. Hence obtain A–1.

73 Views

 Multiple Choice QuestionsLong Answer Type

183.

Show that the matrix straight A space equals space open square brackets table row 2 cell space space space space space 3 end cell row 1 cell space space space space 2 end cell end table close square brackets satisfies the equation A2 – 4A + I = O and hence find A–1.

71 Views

184.

If straight A space equals space open square brackets table row cell space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets comma  show that A2 – 5A + 7 I = O. Hence find A –1.

72 Views

Advertisement
Advertisement

185.

For the matrix straight A space equals space open square brackets table row 3 cell space space space 2 end cell row 1 cell space space space 1 end cell end table close square brackets comma find the numbers a and b such that A2 + aA + bI = O. Hence find A–1.


straight A space equals space open square brackets table row 3 cell space space space space 2 end cell row 1 cell space space space 1 end cell end table close square brackets
therefore space space space straight A squared space equals space open square brackets table row 3 cell space space space 2 end cell row 1 cell space space space 1 end cell end table close square brackets space space open square brackets table row 3 cell space space 2 end cell row 1 cell space space 1 end cell end table close square brackets space equals space open square brackets table row cell 9 plus 2 end cell cell space space space space 6 plus 2 end cell row cell 3 plus 1 end cell cell space space space 2 plus 1 end cell end table close square brackets space equals space open square brackets table row 11 cell space space space 8 end cell row 4 cell space space space 3 end cell end table close square brackets
Now comma space straight A squared plus straight a space straight A space plus space straight b space straight I space equals space straight O
rightwards double arrow space space space space open square brackets table row 11 cell space space space 8 end cell row 4 cell space space space 3 end cell end table close square brackets space plus space straight a space open square brackets table row 3 cell space space space 2 end cell row 1 cell space space 1 end cell end table close square brackets space plus space straight b space open square brackets table row 1 cell space 0 end cell row 0 cell space 1 end cell end table close square brackets space equals space open square brackets table row 0 cell space space 0 end cell row 0 cell space space 0 end cell end table close square brackets
rightwards double arrow space space space space open square brackets table row 11 8 row 4 3 end table close square brackets space plus open square brackets table row cell 3 straight a end cell cell space space space 2 straight a end cell row straight a cell space space straight a end cell end table close square brackets space plus space open square brackets table row straight b cell space space 0 end cell row 0 cell space space space straight b space end cell end table close square brackets space equals space open square brackets table row 0 cell space space space 0 end cell row 0 cell space space space 0 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row cell 11 plus 3 straight a plus straight b end cell cell space space space space space space 8 plus 2 straight a end cell row cell 4 plus straight a end cell cell space space space space space 3 plus straight a plus straight b end cell end table close square brackets space equals open square brackets table row 0 cell space space space 0 end cell row 0 cell space space space 0 end cell end table close square brackets
rightwards double arrow space space space space space 4 plus straight a space equals space 0 comma space space space space 3 plus straight a plus 5 space equals space 0 space space space space rightwards double arrow space space space space straight a space space equals negative 4 comma space space 3 minus 4 plus straight b space equals space 0
therefore space space space space space space space space space space space space space space straight a space equals space minus 4 comma space space space space space straight b space equals space 1
therefore space space space space space space straight A squared minus 4 straight A plus straight I space equals space straight O space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight I space equals space minus straight A squared plus 4 straight A
rightwards double arrow space space space space space space straight A to the power of negative 1 end exponent space equals space minus straight A plus 4 space straight I space equals space minus open square brackets table row 3 cell space space space 2 space end cell row 1 cell space 1 end cell end table close square brackets space plus space 4 space open square brackets table row 1 cell space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
rightwards double arrow space space space space space space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 3 end cell cell space space space space minus 2 end cell row cell negative 1 end cell cell space space space minus 1 end cell end table close square brackets space plus space open square brackets table row 4 cell space space space 0 end cell row 0 cell space space space 4 end cell end table close square brackets space space rightwards double arrow space space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 3 plus 4 end cell cell space space space minus 2 plus 0 end cell row cell negative 1 plus 0 end cell cell space space space minus 1 space plus space 4 end cell end table close square brackets
rightwards double arrow space space space space straight A to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space space 3 end cell end table close square brackets.
69 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

186. If A is square matrix such that A3 = I, prove that A is non-singular and find adj. A and prove that A–1 = A2.
94 Views

187. For the matrix straight A space equals space open square brackets table row 3 cell space space space space space space 1 end cell row 7 cell space space space space space 5 end cell end table close square brackets comma find x and y so that A2 + xI = yA. Hence find A–1 .
126 Views

 Multiple Choice QuestionsLong Answer Type

188.

If straight A space equals space open square brackets table row 1 cell space space space space space tanx end cell row cell negative tanx end cell cell space space space 1 end cell end table close square brackets comma space space space space then space straight A apostrophe straight A to the power of negative 1 end exponent space equals space open square brackets table row cell cos space 2 straight x end cell cell space space space space space minus sin space 2 straight x end cell row cell sin space 2 straight x end cell cell space space space space space space space space cos space 2 straight x end cell end table close square brackets

79 Views

Advertisement
189.

Find the inverse of the matrix straight A space equals space open square brackets table row straight a cell space space straight b end cell row straight c cell space space fraction numerator 1 plus bc over denominator straight a end fraction end cell end table close square brackets and show that a A -1 = (a2 + b c + 1) I – a A.

75 Views

190.

If straight A space equals space open square brackets table row 1 cell space space space space 3 end cell row 2 cell space space space space 7 end cell end table close square brackets space space and space straight B space equals space open square brackets table row 3 cell space space space space 4 end cell row 6 cell space space space space 2 end cell end table close square brackets comma
verify (AB)–1 = B –1 A–1

73 Views

Advertisement