If A is square matrix such that A3 = I, prove that A is non-sin

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

181.

If straight A space equals open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close square brackets comma space show that straight A squared minus 6 straight A plus 17 space straight I space equals space straight O. Hence find straight A to the power of negative 1 end exponent.

84 Views

182.

For the matrix straight A space equals space open square brackets table row 2 cell space space space minus 1 end cell row 3 cell space space space space space space 2 end cell end table close square brackets comma show that A2 – 4 A + 7 I = O. Hence obtain A–1.

73 Views

 Multiple Choice QuestionsLong Answer Type

183.

Show that the matrix straight A space equals space open square brackets table row 2 cell space space space space space 3 end cell row 1 cell space space space space 2 end cell end table close square brackets satisfies the equation A2 – 4A + I = O and hence find A–1.

71 Views

184.

If straight A space equals space open square brackets table row cell space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets comma  show that A2 – 5A + 7 I = O. Hence find A –1.

72 Views

Advertisement
185.

For the matrix straight A space equals space open square brackets table row 3 cell space space space 2 end cell row 1 cell space space space 1 end cell end table close square brackets comma find the numbers a and b such that A2 + aA + bI = O. Hence find A–1.

69 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

186. If A is square matrix such that A3 = I, prove that A is non-singular and find adj. A and prove that A–1 = A2.


Here space space space space space space straight A cubed space equals space straight I space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight A. space straight A. space straight A space equals space straight I space space space space space space space space space space space rightwards double arrow space space space open vertical bar straight A. space space straight A. space straight A close vertical bar space equals space open vertical bar straight I close vertical bar
rightwards double arrow space space space space open vertical bar straight A close vertical bar space open vertical bar straight A close vertical bar space open vertical bar straight A close vertical bar space equals space 1 space space space space space space space space space rightwards double arrow space space space space space space space open vertical bar straight A close vertical bar space space equals 1
rightwards double arrow space space space space space space open vertical bar straight A close vertical bar space not equal to space 0 space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight A space is space non minus singular
therefore space space space space space straight A to the power of negative 1 end exponent space space exists.
Now space straight A space left parenthesis adj. space straight A right parenthesis space equals space open vertical bar straight A close vertical bar space space straight I space space space space space rightwards double arrow space space space straight A left parenthesis adj. space straight A right parenthesis space equals space straight I space space space space space rightwards double arrow space space space straight A to the power of negative 1 end exponent straight A left parenthesis adj. space straight A right parenthesis space equals space straight A to the power of negative 1 end exponent space straight I
rightwards double arrow space space space space adj. space straight A space space equals space straight A to the power of negative 1 end exponent space
Now space straight A cubed space equals space straight I space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight A cubed. space straight A to the power of negative 1 end exponent space equals straight I thin space straight A to the power of negative 1 end exponent space space space rightwards double arrow space space space straight A squared space equals space straight A to the power of negative 1 end exponent space space rightwards double arrow space space straight A to the power of negative 1 end exponent space equals straight A squared space space space space space space space


94 Views

Advertisement
187. For the matrix straight A space equals space open square brackets table row 3 cell space space space space space space 1 end cell row 7 cell space space space space space 5 end cell end table close square brackets comma find x and y so that A2 + xI = yA. Hence find A–1 .
126 Views

 Multiple Choice QuestionsLong Answer Type

188.

If straight A space equals space open square brackets table row 1 cell space space space space space tanx end cell row cell negative tanx end cell cell space space space 1 end cell end table close square brackets comma space space space space then space straight A apostrophe straight A to the power of negative 1 end exponent space equals space open square brackets table row cell cos space 2 straight x end cell cell space space space space space minus sin space 2 straight x end cell row cell sin space 2 straight x end cell cell space space space space space space space space cos space 2 straight x end cell end table close square brackets

79 Views

Advertisement
189.

Find the inverse of the matrix straight A space equals space open square brackets table row straight a cell space space straight b end cell row straight c cell space space fraction numerator 1 plus bc over denominator straight a end fraction end cell end table close square brackets and show that a A -1 = (a2 + b c + 1) I – a A.

75 Views

190.

If straight A space equals space open square brackets table row 1 cell space space space space 3 end cell row 2 cell space space space space 7 end cell end table close square brackets space space and space straight B space equals space open square brackets table row 3 cell space space space space 4 end cell row 6 cell space space space space 2 end cell end table close square brackets comma
verify (AB)–1 = B –1 A–1

73 Views

Advertisement