Examine the consistency of the system of equations:x+y+z = 12x +

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

221.

Compute (AB)1 where:
straight A space equals space open square brackets table row 1 cell space space space space 1 end cell cell space space space 2 end cell row 0 cell space space space 2 end cell cell space minus 3 end cell row 3 cell space minus 2 end cell cell space space space space 4 end cell end table close square brackets space space space space space space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space space space 2 end cell cell space space space space space 0 end cell row 0 cell space space space 3 end cell cell space space minus 1 end cell row 1 cell space space 0 end cell cell space space space space 2 end cell end table close square brackets

75 Views

222.

If straight A space equals space open square brackets table row 2 cell space space space 2 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space space 1 end cell cell space space 2 end cell row 1 cell space minus 2 end cell cell space space 2 end cell end table close square brackets space space space and space straight B space equals space open square brackets table row 1 cell space space 3 end cell cell space space 2 end cell row 1 cell space space space 1 end cell cell space 1 end cell row 2 cell negative 3 end cell cell space 1 end cell end table close square brackets comma verify that (AB)–1 = B"–1 A–1.

75 Views

223.

If straight A to the power of negative 1 end exponent space equals space open square brackets table row 3 cell space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space 6 end cell cell space minus 5 end cell row 5 cell space minus 2 end cell cell space space space space 2 end cell end table close square brackets space space space and space straight B space equals space open square brackets table row cell space space space 1 end cell cell space space space space 2 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 3 end cell cell space space space space space 0 end cell row cell space space 0 end cell cell space space minus 2 end cell cell space space space space space 1 end cell end table close square brackets comma find (AB)–1.

106 Views

 Multiple Choice QuestionsMultiple Choice Questions

224. Let A be a non-singular square matrix of order 3 × 3. Then | adj A| j is equal to
  • | A |
  • | A |2
  • | A |3
  • | A |3
108 Views

Advertisement
225.

If A is an invertible matrix of order 2, then det (A–1) is equal to

  • det (A)

  • fraction numerator 1 over denominator det space left parenthesis straight A right parenthesis end fraction
  • 1

  • 1

74 Views

226. If x, y, z are non-zero real numbers, then the inverse of matrix straight A space equals open square brackets table row straight x cell space space space space 0 end cell cell space space space 0 end cell row 0 cell space space space straight y end cell cell space space space 0 end cell row 0 cell space space space 0 end cell cell space space space straight z end cell end table close square brackets space is
  • open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space space straight y to the power of negative 1 space end exponent end cell cell space space 0 end cell row 0 0 cell space straight z to the power of negative 1 end exponent end cell end table close square brackets
  • xyz open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space space 0 end cell row 0 cell space space straight y to the power of negative 1 end exponent space end cell cell space space 0 end cell row 0 0 cell space straight z to the power of negative 1 end exponent end cell end table close square brackets
  • 1 over xyz open square brackets table row straight x cell space space 0 end cell cell space space 0 end cell row 0 cell space straight y end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space straight z end cell end table close square brackets
  • 1 over xyz open square brackets table row straight x cell space space 0 end cell cell space space 0 end cell row 0 cell space straight y end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space straight z end cell end table close square brackets
80 Views

 Multiple Choice QuestionsShort Answer Type

227.

Examine the consistency of the system of equations:
x + 2y = 2
2x + 3y = 3 

83 Views

228.

Examine the consistency of the system of equations:
2x – y = 5
x + y = 4

75 Views

Advertisement
229.

Examine the consistency of the system of equations:
x + 3y = 5
2x + 6y = 8

98 Views

Advertisement

230.

Examine the consistency of the system of equations:
x+y+z = 1
2x + 3y + 2z = 2
ax+ay+2az = 4


The given equations are
straight x plus straight y plus straight z space equals space 1
2 straight x plus 3 straight y plus 2 straight z space equals space 2
straight x plus straight y plus 2 straight z space equals space 4 over straight a
These equations can be written as
space space space space space space space space open square brackets table row 1 cell space space 1 end cell cell space space space 1 end cell row 2 cell space space 3 end cell cell space space 2 end cell row 1 cell space space 1 end cell cell space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row cell 4 over straight a end cell end table close square brackets
therefore space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space space 1 end cell row 2 cell space space 3 end cell cell space space space 2 end cell row 1 cell space space 1 end cell cell space space space 2 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 1 row 2 row cell 4 over straight a end cell end table close square brackets
space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row 2 cell space space 3 end cell cell space space 2 end cell row 1 cell space space 1 end cell cell space 2 end cell end table close vertical bar space equals space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 2 cell space 1 end cell cell space space 0 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets comma space space by space straight C subscript 2 space rightwards arrow space straight C subscript 2 minus 2 straight C subscript 1 comma space space straight C subscript 3 rightwards arrow space space straight C subscript 3 space minus space straight C subscript 1
space space space space space space space space space space space space space space equals space 1 open vertical bar table row 1 cell space space 0 end cell row 0 cell space 1 end cell end table close vertical bar space equals space 1 left parenthesis 1 minus 0 right parenthesis space equals space 1 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
∴    given equations has a unique solution and so system of equations is consistent.
75 Views

Advertisement
Advertisement