Examine the consistency of the system of equations:3x – y –

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

231.

Examine the consistency of the system of equations:
3x – y – 2z = 2
2y – z = – 1
3x – 5y = 3


The given equations are
3x – y – 2z = 2
0x + 2y – z = – 1
3x – 5y+Oz = 3
These equations can be written as
open square brackets table row 3 cell space space space minus 1 end cell cell space space space minus 2 end cell row 0 cell space space space space space space 2 end cell cell space space space minus 1 end cell row 3 cell space space minus 5 end cell cell space space space space space space 0 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 2 end cell row cell negative 1 end cell row cell space space 3 end cell end table close square brackets

therefore space space space space space space AX space equals space straight B space space where space straight A space equals space open square brackets table row 3 cell space minus 1 end cell cell space space minus 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 1 end cell row 3 cell space minus 5 end cell cell space space space 0 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space space 2 end cell row cell negative 1 end cell row cell space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space minus 1 end cell cell space space minus 2 end cell row 0 cell space space space 2 end cell cell space space minus 1 end cell row 3 cell space space minus 5 end cell cell space space space space space 0 end cell end table close vertical bar space equals space 3 open vertical bar table row 2 cell space space minus 1 end cell row cell negative 5 end cell cell space space space space space 0 end cell end table close vertical bar space minus 0 space open vertical bar table row cell negative 1 end cell cell space space minus 2 end cell row cell negative 5 end cell cell space space space space 0 end cell end table close vertical bar plus 3 space open vertical bar table row cell negative 1 end cell cell space space minus 2 end cell row 2 cell space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space space space space equals 3 left parenthesis 0 minus 5 right parenthesis minus 0 plus 3 left parenthesis 1 plus 4 right parenthesis space equals space minus 15 minus 0 plus 15 space equals space 0
therefore space space space space space straight A to the power of negative 1 end exponent space does space not space exists.
space space space space space
Cofactors of the elements of first row of | A | are
open vertical bar table row cell space space 2 end cell cell space space space minus 1 end cell row cell negative 5 end cell cell space space space space space space 0 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space minus 1 end cell row 3 cell space space space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space 2 end cell row 3 cell space space minus 5 end cell end table close vertical bar
i.e. 0 – 5, – (0 + 3), 0 – 6 i.e. – 5, – 3, – 6 respectively.
Cofactors of the elements of second row of | A | are
negative open vertical bar table row cell negative 1 end cell cell space space space minus 2 end cell row cell negative 5 end cell cell space space space space 0 end cell end table close vertical bar comma space space space space open vertical bar table row 3 cell space space space minus 2 end cell row 3 cell space space space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space minus 1 end cell row 3 cell space space minus 5 end cell end table close vertical bar
i.e. – (0 – 10), 0 + 6, –(– 15 + 3) i.e. 10, 6, 12 respectively.
Co-factors of the elements of third row of | A | are
open vertical bar table row cell negative 1 end cell cell space space minus 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space minus 2 end cell row 0 cell space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space minus 1 end cell row 0 cell space space space space 2 end cell end table close vertical bar
i.e. 1 + 4, – (– 3 – 0), 6 – 0 i.e. 5, 3, 6 respectively.
therefore space space adj space straight A space equals space open square brackets table row cell negative 5 end cell cell space space minus 3 end cell cell space space minus 6 end cell row 10 cell space space space space 6 end cell cell space space space 12 end cell row 5 cell space space 3 end cell cell space space 6 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 5 end cell cell space space 10 end cell cell space space space space 5 end cell row cell negative 3 end cell cell space space 6 end cell cell space space space 3 end cell row cell negative 6 end cell cell space space 12 end cell cell space space space 6 end cell end table close square brackets
therefore space space space left parenthesis adj space straight A right parenthesis thin space straight B space equals open square brackets table row cell negative 5 end cell cell space space 10 end cell cell space space 5 end cell row 10 6 cell space space 3 end cell row 5 12 cell space space 6 end cell end table close square brackets space open square brackets table row cell space space space 2 end cell row cell negative 1 end cell row cell space space space 3 end cell end table close square brackets space equals space open square brackets table row cell negative 10 minus 10 plus 15 end cell row cell negative 6 minus 6 plus 9 end cell row cell negative 12 minus 12 plus 18 end cell end table close square brackets space equals space open square brackets table row cell negative 5 end cell row cell negative 3 end cell row 6 end table close square brackets space not equal to space straight O
∴ solution does not exist and so system of equations is inconsistent.

80 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

232.

Examine the consistency of the system of equations:
5x – y + 4z = 5
2x + 3y + 5z = 2
5x – 2y + 6z = – 1

90 Views

 Multiple Choice QuestionsLong Answer Type

233.

Examine the consistencies of the system of equations:
3x – y + 2z = 3
2x + y + 3z =5
x - 2y - z = 1

91 Views

234.

Examine the consistencies of the system of equations:
x - y+ z = 3
2x - y – z = 2
– x – 2y + 2z = 1

74 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

235. Solve the following system of equations using matrix method:
2x + 5y = 1
1x + 2y = 7
72 Views

 Multiple Choice QuestionsLong Answer Type

236. Solve system of linear equations,  using matrix method:
5x + 2y = 4
7x + 3y = 5
74 Views

 Multiple Choice QuestionsShort Answer Type

237. Solve system of linear equations,  using matrix method:
2x - y = -2
3x + 4y = 3
93 Views

238. Solve system of linear equations,  using matrix method:
4x – 3y = 3 
3x – 5y = 7 
75 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

239. Solve system of linear equations,  using matrix method:
5x + 2y = 3
3x + 2y = 5

74 Views

 Multiple Choice QuestionsShort Answer Type

240.

Use matrix method to solve the system of equations:
3x – 2y = 7
5x + 3y = 1

79 Views

Advertisement