Solve (Use matrix method):x + y = 0y + z = 1z + x = 3    from

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

261.

Solve the following system of equations by matrix method:
2x – 3y + 5z =11
3 x + 2y – 4 z = – 5
x + y – 2 z = –3

78 Views

262.

Use matrix method to solve the equations:
x + y + z = 3
2x – y + z = 2
x – 2y + 3z = 2

74 Views

Advertisement

263.

Solve (Use matrix method):
x + y = 0
y + z = 1
z + x = 3   


The given equations are
x + y + Oz =0
Ox + y + z = 1
x + 0y + z = 3
These equations can be written as
open square brackets table row 1 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 0 row 1 row 3 end table close square brackets
or  AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space thin space space straight B space equals space open square brackets table row 0 row 1 row 3 end table close square brackets

open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space 1 end cell row 1 cell space space 0 end cell cell space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar space minus space 1 open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar plus 0 open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 0 end cell end table close vertical bar
space space space space space space space equals 1 space left parenthesis 1 minus 0 right parenthesis space minus space 1 left parenthesis 0 minus 1 right parenthesis space plus space 0 left parenthesis 0 minus 1 right parenthesis space equals space 1 left parenthesis 1 right parenthesis space minus space 1 left parenthesis negative 1 right parenthesis space plus space 0 left parenthesis negative 1 right parenthesis
space space space space space space space equals 1 plus 1 plus 0 space equals space 2 not equal to 0
space space space space therefore space space space space straight A to the power of negative 1 end exponent space exists.
Co-factors of the elements of first row of | A | are
open vertical bar table row 1 cell space space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space space 0 end cell end table close vertical bar
i.e.   1, 1 1 respectively.
Co-factors of the elements of second row of | A | are
therefore space space space space space space space adj. space straight A space equals space open square brackets table row cell space space 1 end cell cell space space space 1 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space 1 end cell cell space space space space space space space 1 end cell row cell space space 1 end cell cell space minus 1 end cell cell space space minus 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space 1 end cell row 1 cell space space space space 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space space space space 1 end cell end table close square brackets
i.e. -1, 1, 1 respectively.
Co-factors of the elements of third row of | A | are
open vertical bar table row 1 cell space space 0 end cell row 1 1 end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 0 end cell row 0 cell space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar
i.e. 1,  -1,  1 respectively.


    or    AX space equals space straight B space space space where space straight A space equals open square brackets table row 1 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 0 row 1 row 3 end table close square brackets
Co-factors of the elements of first row of | A | are

74 Views

Advertisement
264. Using matrices, solve the following system of linear equations:
2x + y + z = 7
x – y – z = – 4
3x + 2y + z = 10  
84 Views

Advertisement
265.

Using matrices,  following system of linear equations:
x – y + 2 z = 1
2 y – 3z = 1
3x – 2y + 4z = 2  

76 Views

266.

Use matrix method to solve the following system of equations:
x – y + 2z = 7  
3x + 4 y – 5 z = – 5
2x – y + 3z = 12

81 Views

267.

Use matrix method to solve the following system of equations:
x – y + 2z = 7  
3x + 4 y – 5 z = – 5
2x – y + 3z = 12

110 Views

268.

Use matrix method to solve the following system of equations:
5x – y + z = 4
3x + 2y – 5z = 2
x + 3 y – 2 z = 5

72 Views

Advertisement
269.

Use matrix method to solve the following system of equations:
4x + 2y + 3z = 2
x + y + z = 1
3x + y – 2z = 5

75 Views

270.

Use matrix method to solve the following system of equations:
2x + 3y + 3z = 5
x – 2 y + z = – 4
3x – y – 2z = 3

77 Views

Advertisement