Evaluate: a + ibc + id-c + ida - ib
Find the co-factor of a12 in the following:
2-3560415-7
Using properties of determinants, prove the following:
αβγα2β2γ2β + γ γ + α α + β = α - β β - γ γ - α α + β + γ
Write the value of the determinant 2 3 4 5 6 86x 9x 12x
Using properties of determinants prove the following:
a bca - b b - c c - ab + c c + a a + b = a3 + b3 + c3 - 3abc
Find the minor of the element of second row and third column ( a23 ) in the following determinant:
2 -3 56 0 41 5 -7
Using properties of determinants show the following:
b + c 2 ab caab a + c 2 bcac bc a + b 2 = 2abc ( a + b + c )3
Consider,
∆ = ( b + c )2 ab acab ( a + c )2 bcac bc ( a + b )2By performing R1 → a R1, R2 → b R2, R3 → c R3 and dividing the determinant by abc, we get∆ = 1abc a ( b + c )2 a2b a2cab2 b ( a + c )2 b2cac2 bc2 c ( a + b )2
Now, taking a, b, c common from C1, C2, and C3
∆ = abcabc ( b + c )2 a2 a2b2 ( a + c )2 b2c2 c2 ( a + b )2⇒ ∆ = ( b + c )2 a2 a2b2 ( c + a )2 b2c2 c2 ( a + b )2Applying C1 → C1 - C2, C2 → C2 - C3⇒ ∆ = ( b + c )2 - a2 0 a2 b2 -( c + a )2 ( c + a )2 - b2 b20 c2 - ( a + b )2 ( a + b )2∆ = a + b + c 2 b + c - a 0 a2 b - c - a c + a - b b20 c - a - b ( a + b )2
Applying R3 → R3 - ( R1 + R2 )∆ = a + b + c 2 b + c -a 0 a2b - c -a c + a - b b2 2a - 2b-2a 2ab
Applying C1 → C1 + C2∆ = a + b + c 2 b + c - a 0 a20 c + a - b b2-2b -2a 2ab Applying C3 → C3 + bC2∆ = a + b + c 2 b + c - a 0 a20 c + a - b bc + ab-2b -2a 0
Applying C1 → aC1 and C2 → bC2∆ = a + b + c 2ab ab + ac - a20 a20 bc + ab - b2 bc + ab-2ab -2ab 0Applying C1 → C1 - C2∆ = a + b + c 2ab ab + ac - a20 a2-bc - ab + b2 bc + ab - b2 bc + ab0 -2ab 0
Expanding along R3
= a + b + c 2ab 2ab ab2c + a2b2 + abc2 + a2bc - a2bc - a3b + a2bc + a3b - a2b2 = 2 ( a + b + c )2 ( ab2c + abc2 + a2bc )= 2 ( a + b + c )3 abc= 2 abc ( a + b + c )3 = R.H.S.
Using properties of determinants, prove that
- a2 ab ac ba -b2 bc ca cb - c2 = 4 a2b2c2
Using matrix method, solve the following system of equations:
2x + 3y + 10z = 4, 4x - 6y + 5z, 6x + 9y - 20z; x, y, z ≠ 0
If ∆ = 5 3 8 2 0 1 1 2 3 , white the cofactor of the element a32.