Using properties of determinants show the following: b 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

321.

Evaluate: a + ibc + id-c + ida - ib


322.

Find the co-factor of a12 in the following:

2-3560415-7


 Multiple Choice QuestionsLong Answer Type

323.

Using properties of determinants, prove the following:

αβγα2β2γ2β + γ     γ + α     α + β = α - β β - γ  γ - α α + β + γ


 Multiple Choice QuestionsShort Answer Type

324.

Write the value of the determinant  2    3   4 5  6   86x  9x  12x


Advertisement

 Multiple Choice QuestionsLong Answer Type

325.

Using properties of determinants prove the following:

a bca - b    b - c   c - ab + c   c + a    a + b = a3 + b3 + c3 - 3abc


 Multiple Choice QuestionsShort Answer Type

326.

Find the minor of the element of second row and third column ( a23 ) in the following determinant:

  2  -3   56   0  41   5 -7  


 Multiple Choice QuestionsLong Answer Type

Advertisement

327.

Using properties of determinants show the following:

 b + c 2   ab caab       a + c 2  bcac     bc   a + b 2 = 2abc ( a + b + c )3


Consider,

 = ( b + c )2   ab  acab    ( a + c )2  bcac    bc    ( a + b )2By performing R1  a R1,   R2  b R2,  R3  c R3  and dividing the determinant by abc, we get = 1abc a ( b + c )2   a2b  a2cab2    b ( a + c )2  b2cac2    bc2   c  ( a + b )2

 

Now, taking  a,  b,  c  common from C1, C2,  and  C3

 = abcabc ( b + c )2   a2   a2b2   ( a + c )2   b2c2    c2   ( a + b )2  = ( b + c )2   a2   a2b2   ( c + a )2   b2c2    c2   ( a + b )2Applying  C1  C1 - C2,     C2  C2 - C3  = ( b + c )2 - a2    0     a2 b2 -( c + a )2     ( c + a )2 - b2    b20     c2 -  ( a + b )2    ( a + b )2 =  a + b + c 2   b + c - a    0    a2 b - c - a        c + a - b    b20        c - a - b     ( a + b )2

 

Applying  R3  R3 - ( R1 + R2 ) =  a + b + c 2  b + c -a 0  a2b - c -a   c + a - b    b2 2a - 2b-2a   2ab 

Applying  C1  C1 + C2 =  a + b + c 2  b + c - a   0 a20     c + a - b   b2-2b     -2a 2ab Applying  C3  C3 + bC2 =  a + b + c 2  b + c - a   0 a20     c + a - b   bc + ab-2b     -2a 0 

Applying  C1   aC1   and   C2   bC2 =  a + b + c 2ab ab + ac - a20     a20     bc + ab - b2    bc + ab-2ab    -2ab      0Applying  C1   C1 - C2 =  a + b + c 2ab ab + ac - a20     a2-bc - ab + b2     bc + ab - b2    bc + ab0    -2ab      0

Expanding along R3

=  a + b + c 2ab    2ab  ab2c + a2b2 + abc2 + a2bc - a2bc - a3b + a2bc + a3b - a2b2  = 2 ( a + b + c )2 (  ab2c +  abc2 + a2bc )= 2 ( a + b + c )3 abc= 2 abc  ( a + b + c )3 = R.H.S.


Advertisement
328.

Using properties of determinants, prove that

  - a2      ab         ac     ba -b2      bc    ca  cb  - c2  = 4 a2b2c2


Advertisement
329.

Using matrix method, solve the following system of equations:

2x + 3y + 10z = 4,       4x - 6y + 5z,       6x + 9y - 20z;    x, y, z  0


 Multiple Choice QuestionsShort Answer Type

330.

If  =  5  3 8  2   0  1  1  2 3  ,  white the cofactor of the element a32.


Advertisement