Using matrix method, solve the following system of equations:2x&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

321.

Evaluate: a + ibc + id-c + ida - ib


322.

Find the co-factor of a12 in the following:

2-3560415-7


 Multiple Choice QuestionsLong Answer Type

323.

Using properties of determinants, prove the following:

αβγα2β2γ2β + γ     γ + α     α + β = α - β β - γ  γ - α α + β + γ


 Multiple Choice QuestionsShort Answer Type

324.

Write the value of the determinant  2    3   4 5  6   86x  9x  12x


Advertisement

 Multiple Choice QuestionsLong Answer Type

325.

Using properties of determinants prove the following:

a bca - b    b - c   c - ab + c   c + a    a + b = a3 + b3 + c3 - 3abc


 Multiple Choice QuestionsShort Answer Type

326.

Find the minor of the element of second row and third column ( a23 ) in the following determinant:

  2  -3   56   0  41   5 -7  


 Multiple Choice QuestionsLong Answer Type

327.

Using properties of determinants show the following:

 b + c 2   ab caab       a + c 2  bcac     bc   a + b 2 = 2abc ( a + b + c )3


328.

Using properties of determinants, prove that

  - a2      ab         ac     ba -b2      bc    ca  cb  - c2  = 4 a2b2c2


Advertisement
Advertisement

329.

Using matrix method, solve the following system of equations:

2x + 3y + 10z = 4,       4x - 6y + 5z,       6x + 9y - 20z;    x, y, z  0


The given system of equation is  2x + 3y + 10z = 4,    4x - 6y + 5z = 1,   6x  + 9y - 20z = 2

The given system of equation can be written as 

 2       3      104  - 6        56      9  - 20  1 x  1y 1y = 412Or  AX = B,  where  A =  2       3       104  - 6         56      9  - 20 ,    X = 1 x  1y 1y,      and  B = 412 Now,   A  =  2       3       104  - 6         56       9  - 20                      = 2 ( 120 - 45 ) - 3 ( - 80 - 30 ) + 10 ( 36 + 36 )                     = 1200  0

Hence, the unique solution of the system of equation is given by  X = A- 1 B

Now, the cofactors of  A  are computed as:

 

C11 = ( - 1 )2   120 - 45  = 75,             C12 = ( - 1 )3   - 80 - 30  = 110,           C13 = ( - 1 )4  36 + 36   = 72C21 = ( - 1 )3   - 60 - 90  = 150,        C22 = ( - 1 )4  - 60 - 90  = 150,            C23 = ( - 1 )5  18 - 18  = 0C31 = ( - 1 )4  15+ 60   =75,                 C32 = ( - 1 )5   10 - 40  =30,                  C33 = ( - 1 )6   - 12 - 12  = - 24

 

 Adj A =  75     110      72150     -100          075      30 - 24 T =  75     150       75110     -100          3072         0   - 24  A-1 = Adj A A  = 11200  75     150       75110     -100          3072         0   - 24 X =  A-1  B     = 11200  75     150       75110     -100          3072         0   - 24   4 1 2     =11200  3000 + 150 + 150440 - 100 + 60288 + 0 - 48   = 11200   600 400 240 

 

X =  6001200 40012002401200   =    121315      1x1y1z   =   121315  1x = 12,      1y = 13,    and    1z = 15 x = 2,   y = 3,    and    z = 5

Thus, solution of given system of equation is given by  x = 2,   y = 3,   z = 5.


Advertisement

 Multiple Choice QuestionsShort Answer Type

330.

If  =  5  3 8  2   0  1  1  2 3  ,  white the cofactor of the element a32.


Advertisement