The simultaneous equations Kx + 2y - z = 1, (K - I)y - 2z = 2 and

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

381.

The system of equations

x + y + z = 0

2x + 3y + z = 0

and x + 2y = 0

has

  • a unique solution; x = 0, y = 0, z = 0

  • infinite solutions

  • no solution

  • finite number of non-zero solutions


382.

If D = diag (d1, d2, ..., dn), where di  0, for i = 1, 2, ... , n then D-1 is equal to

  • DT

  • D

  • adj(D)


383.

If x, y, z are different from zero and  = ab - yc - za - xbc - za - xb - yc = 0, then the value of the expression ax + by + cz is

  • 0

  • - 1

  • 1

  • 2


384.

If x = - 5 is a root of 2x + 14822x2762x = 0, then the other roots are :

  • 3, 3.5

  • 1, 3.5

  • 1, 7

  • 2, 7


Advertisement
Advertisement

385.

The simultaneous equations Kx + 2y - z = 1, (K - I)y - 2z = 2 and (K + 2)z = 3 have only one solution when :

  • K = - 2

  • K = - 1

  • K = 0

  • K = 1


B.

K = - 1

The system of given equations are

  Kx + 2y - z = 1             ...(i)

 (K - 1)y - 2z = 2           ...(ii)

and (K + 2)z = 3           ...(iii)

This system of equations has a unique solution, if

K2- 10K - 1- 200K + 2  0 K + 2K20K - 1  0 K + 2KK - 1  0 K  - 2, 0, 1i.e., K = - 1, is a required answer.


Advertisement
386.

If the matrix Mr is given by Mr = rr - 1r - 1r, r = 1, 2, 3, ..., then the value of det(M1) + det(M2) + ... + det(M2008) is

  • 2007

  • 2008

  • (2008)2

  • (2007)2


387.

If α, β, γ are the cube roots of unity, then the value of the determinant eαe2αe3α - 1eβe2βe3β - 1eγe2γe3γ - 1 is equal to

  • - 2

  • - 1

  • 0

  • 1


388.

If the three linear equations

x + 4ay + az = 0

x + 3by + bz = 0

x + 2cy + cz = 0

have a non-trivial solution, where aa  0, b  0, c  0, then ab + bc is equal to

  • 2ac

  • - ac

  • ac

  • - 2ac


Advertisement
389.

If A = 1235, then the value of the determinant A2009 - 5A2008 is

  • - 6

  • - 5

  • - 4

  • 4


390.

The value of the determinant 15!16!17!16!17!18!17!18!19! is equal to

  • 15! + 16!

  • 2(15!)(16!)(17!)

  • 15! + 16! + 17!

  • 16! + 17!


Advertisement