The solution of the equation101- 1100- 11xyz =&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

411.

The value of determinant,  is :

  • 536 - 5

  • 56 - 3

  • 27 - 5


412.

a +xbcab +ycabc +z is equal to :

  • abc1 + xa + yb + zc

  • abc1 + ax + by + cz

  • xyz1 + ax + by + cz

  • xyz1 + xa + yb + zc


413.

Let the numbers 2, b, c be in an A.P. and A = 1112bc4b2c2. If det(A)  [2, 16], then c lies in the interval :

  • [4, 6]

  • (2 + 23/4, 4)

  • [2, 3)

  • [3, 2 + 23/4]


414.

If the system of equation 2x + 3y - z = 0, x + ky - 2z = 0 and 2x - y + z = 0 has a non – trivial solution (x, y, z) , then xy +yz + zx + k is equal to

  • 34

  • 12

  • - 4

  • 14


Advertisement
415.

Let α and β be the roots of the equation x2 + x + 1 = 0 . Then for y  0 in R, y + 1αβαy +β1β1y + α is equal to :

  • y(y2 - 1)

  • y3

  • y(y2 - 3)

  • y3 - 1


416.

If the line y = mx + 73 is normal to the hyperbola x224 - y218 = 1, then a value of m is :

  • 52

  • 152

  • 215

  • 315


417.

If 1 = xsinθcosθ- sinθ- x1cosθ1x and xsin2θcos2θ- sin2θ- x1cos2θ1xx  0; then for all θ  0, π2 :

  • 1 - 2 = xcos2θ - cos4θ

  • 1 + 2 = - 2x3

  • 1 + 2 = - 2x3 + x - 1

  • 1 - 2 = - 2x3


Advertisement

418.

The solution of the equation

101- 1100- 11xyz = 112 is (x, y, z) = 

  • (1, 1, 1)

  • (0, - 1, 2)

  • (- 1, 2, 2)

  • (- 1, 0, 2)


D.

(- 1, 0, 2)

    101- 1100- 11xyz = 112 x + 0y + z- x + y + 0z0x - y +z = 112       x +z = 1,        - x+ y = 1and - y + z = 2On solving these equations, we getx =- 1, y = 0,  z = 2


Advertisement
Advertisement
419.

The value of 'a' for which the system of equations

a3x + (a + 1)3y + (a + 2)3z = 0

     ax + (a - 1)y + (a + 2)z = 0

                          x + y + z = 0

  • 1

  • 0

  • - 1

  • None of these


420.

If 72 and 1 are the roots of the equation 2x3722x2762x = 0, then third root is

  • - 72

  • - 92

  • - 32

  • - 52


Advertisement