If A is an invertible matrix of order n, then the determinant of adj A is equal to :
An
An + 1
An - 1
An + 2
If A is a square matrix such that AadjA = 400040004,Then detadjA = ?
4
16
64
256
a - b - c2a2a2bb - c - a2b2c2cc - a - b is equal to
0
a + b + c
(a + b + c)2
(a + b + c)3
The inverse of the matrix 7- 3- 3- 110- 101 is
133143134
131438341
111334343
111343334
If x, y, z are all positive and are the pth, qth and rth terms of a geometric progression respectively, then the value of the determinant
logxp1logyq1logzr1 equals
log(xyz)
(p - 1)(q - 1)(r - 1)
pqr
If 1- 1x1x1x- 11 has no inverse, then the real value of x is
2
3
1
If fx1xx + 12xxx - 1xx + 13xx - 1xx - 1x - 2x - 1xx + 1then f2012 = ?
- 500
500
A.
Given, fx= 1xx + 12xxx - 1xx + 13xx - 1xx - 1x - 2x - 1xx + 1Taking x and xx - 1 common from R2 and R3 and x + 1 common from C3= x × xx - 1 × x + 11x12(x - 1)13(x - 2)1 applying C2→ C1 + C2= x2x2 - 11x + 112x + 113x + 11= x2x2 - 1x + 1111211311 = 0⇒ fx = 0∴ f2012 = 0
x + 2x + 3x + 5x + 4x + 6x + 9x + 8x + 11x + 15 = ?
3x2 + 4x + 5
x3 + 8x + 2
- 2
1 + i1 - i4 + 1 - i1 - i4 = ?
The value of the determinant b2 - abb - cbc - acab - a2a - bb2 - abbc - acc - aab - a2 is
abc
ab + bc + ca