The equation of curve satisfying differential equation 1&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

731.

The solution of the equation

x - 4y3dydx - y = 0, y > 0 is

  • x = y3 + cy

  • x + 2y3 = cy

  • y = x3 + cx

  • y + 2x3 = cx


732.

The differential equation corresponding to the family of circles inthe plane touching the Y-axis at the origin, is

  • dydx = y2 - x22xy

  • dydx = 2xyx2 + y2

  • dydx = x2 - y22xy

  • dydx = y2 + x22xy


733.

Let y = y(x) be the solution of the differential equation,

2 + sinxy + 1 . dydx = - cosx, y > 0, y0 = 1. If yπ = aand dydx at x = π is b, then the ordered pair a, b = ?

  • 2, 32

  • (1, - 1)

  • (2, 1)

  • (1, 1)


734.

The equation of the normal to the curve y = (1 + x)2y + cos2(sin – 1(x)) at x = 0 is :

  • y = 4x + 2

  • y + 4x = 2

  • x + 4y = 8

  • 2y + x = 4


Advertisement
735.

If a curve y = f(x), passing through the point (1,2), is the solution of the differential equation, 2x2dy = 2xy + y2dx, then f12 is equal to

  • 11 - loge2

  • 1 + loge2

  • 11 + loge2

  •  - 11 + loge2


 Multiple Choice QuestionsShort Answer Type

736.

If y =k = 16 cos-135coskx - 45sinkx then dydx at x = 0 is


 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

737.

The equation of curve satisfying differential equation 1 + y2ex + 1dy = exy2dx and also passes through the point 0, 1 is

  • y2 + 1 = y1 + ex2

  • y2 - 1 = ylog1 + ex2

  • y + 1 = ylog1 + ex2

  • 2y2 +1 = ylog1 + ex2


B.

y2 - 1 = ylog1 + ex2

Given equation is 1 + y2y2dy = ex1 + exdx 1y2 + 1dy = ex1 + exdx - 1y + y = log1 + ex + C passes through 0, 1 - 1 +1 = log2 +C = - log2equation of curve y - 1y = log1 + ex - log2

 y2 - 1 = ylog1 + ex2


Advertisement
738.

If y2 + logcos2x = y then

  • y''0 = 2

  • y'0 + y''0 = 1

  • y'0  + y''0 = 3

  • None of these


Advertisement
739.

If x3dy + xydx = x2dy + 2ydx; y2 = e and x > 1, then y4 = ?

  • e2

  • 12 + e

  • 32e

  • 32 + e


740.

If the sum of the series 20 + 1935 + 1915 + 1845 + ... upto nth term is 488 andthe nth term is negative

  • nth term is - 425

  • n = 41

  • nth term is - 4

  • n = 60


Advertisement