If ∫dxxlogx - 2logx - 3 = I + C, then I =?
1xloglogx - 3logx - 2
loglogx - 3logx - 2
loglogx - 2logx - 3
If ∫0bdx1 + x2 = ∫b∞dx1 + x2, then b = ?
tan-113
32
2
1
The approximate value of ∫13dx2 + 3x using Simpson's rule and dividing the interval [1, 3] into two equal parts is
13log115
107110
22110
119440
If ∫dxsin3xcosx = gx + c, then gx = ?
- 2cotx
- 2tanx
2cotx
2tanx
If ∫dx1 + xx - x2 = Ax1 -x + B1 - x + C, where C is real constant, then A + B = ?
3
0
B.
Given,∫dx1 + xx - x2 = Ax1 -x + B1 - x + COn differentiating both sides, we get11 + xx - x = 1 -xA12x - Ax + B122 - x - 11 -x2⇒ 11 + xx - x2 = 1 - xA + Ax + Bx1 - x2x1 -x⇒ 21 - x1 +x = A + Bx⇒ 2 - 2x = A = Bx⇒ A = 2, B = 2∴ A - B = 0
For any integer n ≥ 2, let In = ∫tann(x)dx. If In = 1atann - 1x - bIn - 2 for n≥ 2, then the ordered par (a, b) equals to
n - 1, n - 1n - 2
n - 1, n - 2n - 1
(n, 1)
(n - 1, 1)
If x2 - 1x + 12xx2 + x + 1dx= Atan-1x2 + x + 1x C, in which C is a constant, then A =?
12
By the defination of the definite integral, the value oflimn→∞1415 + n5 + 2425 + n5 + 3435 + n6 + ... + n4n5 + n5 is
log2
15log2
14log2
13log2
∫0π6cos43θ . sin26θdθ = ?
π96
5192
5π256
5π192
∫dxx - 1x2 - 1 is equal to
- x - 1x + 1 + C
x - 1x2 + 1 + C
- x + 1x - 1 + C
x2 + 1x - 1 + C