Let f be the twice differential function on 1, 6. If f2 = 8, f'2 = 5,f'x ≥ 1 and f''x ≥ 4, for all x ∈ 1, 6, then :
f5 + f'5 ≥ 28
f'5 + f''5 ≤ 20
f5 ≤ 10
f5 + f'5 ≤ 26
If the system of equations
x – 2y + 3z = 9
2x + y + z = b
x – 7y + az = 24,
has infinitely many solutions, then a – b is equal to :
The integral ∫π6π3tan3x . sin23x2sec2xsin23x + 3tanxsin6xdx = ?
- 19
92
- 118
718
Let {x} and [x] denote the fractional part of x and the greatest integer r ≤ x respectively of a real number x. if ∫0nxdx and 10(n2 – n), (n ∈ N, n > 1) are three consecutive terms of a G.P. then n is equal to ......
If a→ = 2i^ + j^ + 2k^, then the value of i^ × a→ × i^2 + j^a→ × j^2 + k^ × a→ × k^2 = ?
Ans : 18
Let a→ = xi^ = xi^ + yj^ +zk^i^ × a→ × i^ = i^ . i^a→ - a→ . i^i^ = yj^ + zk^similarly j^ × a→ × j^ = xi^ + zk^ and k^ × a^ × k^ = xi^ + yk^i^ × a × i2 + j^ × a→ × j^2 + k^ × a→ × k^2yj^ + zk^2 + xi^ + zk^2 + xi^ + yj^2 = 2a2 = 29 = 18
If ∫e2x + 2ex - e - x - 1eex +e - xdx = gxeex + e - x + C, where c is a constant of integration, then g(0) is
1
e
e2
2
The value of ∫ - π2π211 +esinxdx is :
π4
π2
3π2
π
If ∫cosθ5 + 7sinθ - 2cos2θdθ = AlogeBθ + C, where C is a constant of integration, then BθAcan be:
2sinθ + 15sinθ + 3
52sinθ + 1sinθ + 3
2sinθ + 1sinθ + 3
5sinθ + 32sinθ + 1
The general solution of the differential equation
1 + x2 + y2 +x2y2 + xydydx = 0 where C is constant of integration
1 + y2 + 1 + x2 = 12loge1 + x2 - 11 + x2 +1 +C
1 + y2 + 1 + x2 = 12loge1 + x2 + 11 +x2 - 1 + C
1 + y2 - 1 + x2 = 12loge1 + x2 - 11 +x2 + 1 + C
1 + y2 - 1 + x2 = 12loge1 + x2 + 11 +x2 - 1 + C
If I1 = ∫011 - x50100dx and I2 = ∫011 - x50101dx I2 = αI1 Then α = ?
50495050
50515050
50505051
50505049