Find the value of the following : from Mathematics Inverse Trig

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

21. Find the principal values of the following

tan-1(- 1)


257 Views

22. Find the principal values of the following

sec to the power of negative 1 end exponent open parentheses fraction numerator 2 over denominator square root of 3 end fraction close parentheses


133 Views

23. Find the principal values of the following

cot to the power of negative 1 end exponent open parentheses square root of 3 close parentheses


121 Views

24. Find the principal values of the following

cos to the power of negative 1 end exponent open parentheses negative fraction numerator 1 over denominator square root of 2 end fraction close parentheses


118 Views

Advertisement
25. Find the principal values of the following

cos e c to the power of negative 1 end exponent left parenthesis negative square root of 2 right parenthesis


110 Views

26. Evaluate

sin open square brackets 2 space cos to the power of negative 1 end exponent open parentheses negative 3 over 5 close parentheses close square brackets
266 Views

27. Evaluate  sin[ tan-1 (- 1) ]



125 Views

28. Find the value of tan-1 open square brackets 2 space cos space open parentheses 2 space sin to the power of negative 1 end exponent 1 half close parentheses close square brackets
107 Views

Advertisement
Advertisement

29. Find the value of the following :

space space space space space space space space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis plus cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses plus sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses


Let y = tan-1(1)     where negative straight pi over 2 less than y less than straight pi over 2

therefore      tan  y = 1    where  negative straight pi over 2 less than straight y less than straight pi over 2

therefore space space space space space space space space straight y space equals straight pi over 4 space space space space rightwards double arrow space space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis equals straight pi over 4
Again space let space straight z space equals space cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses space space where space space 0 less or equal than straight z less or equal than straight pi
therefore space space space space cos space straight z equals negative 1 half space space space space where space 0 less or equal than straight z less or equal than straight pi
therefore space space space space cos space straight z space equals space minus 1 half space space space where space 0 less or equal than straight z less or equal than straight pi
therefore space space space space cos space straight z space equals space minus space cos straight pi over 3 equals cos open parentheses straight pi minus straight pi over 3 close parentheses equals cos fraction numerator 2 straight pi over denominator 3 end fraction
Again space let space straight l space equals space sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses space space where space minus straight pi over 2 less or equal than straight l less or equal than straight pi over 2
therefore space space space space sin space straight l space equals 1 half space space space space space space where space space straight pi over 2 less or equal than straight l less or equal than straight pi over 2
therefore space space space space space sin space space straight l equals space sin straight pi over 6 space equals space sin space open parentheses negative straight pi over 6 close parentheses
therefore space space space space space straight s space straight l space equals space minus straight pi over 6 space space rightwards double arrow space space sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses equals straight pi over 6
Consider space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis plus cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses equals straight pi over 6
space space space space space space space space space space space space space equals straight pi over 4 plus fraction numerator 2 straight pi over denominator 3 end fraction minus straight pi over 6 equals fraction numerator 3 straight pi plus 8 straight pi minus 2 straight pi over denominator 12 end fraction equals fraction numerator 9 straight pi over denominator 12 end fraction equals fraction numerator 3 straight pi over denominator 4 end fraction

146 Views

Advertisement
30. Find the value of the following :

cos to the power of negative 1 end exponent open parentheses 1 half close parentheses plus 2 space sin to the power of negative 1 end exponent open parentheses 1 half close parentheses
123 Views

Advertisement