from Mathematics Inverse Trigonometric Functions

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

41.

Prove the following :

3 space sin to the power of negative 1 end exponent straight x equals sin to the power of negative 1 end exponent left parenthesis 3 straight x minus 4 straight x cubed right parenthesis comma space straight x element of open square brackets negative 1 half comma 1 half close square brackets

148 Views

42.

Prove the following :

3 space cos to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent thin space left parenthesis 4 straight x cubed minus 3 straight x right parenthesis comma space straight x element of open square brackets 1 half comma space 1 close square brackets

143 Views

Advertisement

43. Prove space that space fraction numerator 9 straight pi over denominator 8 end fraction minus 9 over 4 space sin to the power of negative 1 end exponent 1 third equals 9 over 4 sin to the power of negative 1 end exponent fraction numerator 2 square root of 2 over denominator 3 end fraction.


straight L. straight H. straight S. space equals space fraction numerator 9 straight pi over denominator 8 end fraction minus 9 over 4 sin to the power of negative 1 end exponent open parentheses 1 third close parentheses equals 9 over 4 open curly brackets straight pi over 2 minus sin to the power of negative 1 end exponent 1 third close curly brackets
space space space space space space space space space space equals space 9 over 4 space open curly brackets cos to the power of negative 1 end exponent open parentheses 1 third close parentheses close curly brackets space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space sin to the power of negative 1 end exponent space straight x plus space cos to the power of negative 1 end exponent space straight x equals straight x over 2 close square brackets
space space space space space space space space space space equals 9 over 4 space sin to the power of negative 1 end exponent square root of 1 minus open parentheses 1 third close parentheses squared end root space space space space space space space space space space space space left square bracket because space cos to the power of negative 1 end exponent space straight x space equals space sin to the power of negative 1 end exponent space square root of 1 minus straight x squared end root space for space 0 less or equal than straight x space less or equal than space 1 space right square bracket
space space space space space space space space space space equals space 9 over 4 space sin to the power of negative 1 end exponent space open parentheses square root of 8 over 9 end root close parentheses equals 9 over 4 space sin to the power of negative 1 end exponent space open parentheses fraction numerator 2 square root of 2 over denominator 3 end fraction close parentheses equals space straight R. straight H. straight S.
101 Views

Advertisement
44.

Show that tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 2 over 11 equals tan to the power of negative 1 end exponent 3 over 4.

107 Views

Advertisement
45.

Prove that sin to the power of negative 1 end exponent space straight x plus space cos to the power of negative 1 end exponent space straight x equals straight pi over 2

170 Views

46.

Prove that tan to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent straight x equals straight pi over 2 comma space straight x element of straight R

116 Views

47.

Prove that cos e c to the power of negative 1 end exponent x plus s e c to the power of negative 1 end exponent x equals straight pi over 2 comma space open vertical bar x close vertical bar greater or equal than 1

99 Views

48. Prove that sin to the power of negative 1 end exponent x plus sin to the power of negative 1 end exponent x y equals sin to the power of negative 1 end exponent open square brackets x square root of 1 minus y squared end root plus square root of 1 minus x squared end root close square brackets
113 Views

Advertisement
49. Prove that sin to the power of negative 1 end exponent x minus sin to the power of negative 1 end exponent y equals sin to the power of negative 1 end exponent open square brackets x square root of 1 minus y squared end root minus y square root of 1 minus x squared end root close square brackets
110 Views

50. Prove that cos to the power of negative 1 end exponent x plus cos to the power of negative 1 end exponent y equals cos to the power of negative 1 end exponent open square brackets x y minus square root of left parenthesis 1 minus x squared right parenthesis left parenthesis 1 minus y squared right parenthesis end root close square brackets
161 Views

Advertisement