Prove that  from Mathematics Inverse Trigonometric Functions

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

41.

Prove the following :

3 space sin to the power of negative 1 end exponent straight x equals sin to the power of negative 1 end exponent left parenthesis 3 straight x minus 4 straight x cubed right parenthesis comma space straight x element of open square brackets negative 1 half comma 1 half close square brackets

148 Views

42.

Prove the following :

3 space cos to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent thin space left parenthesis 4 straight x cubed minus 3 straight x right parenthesis comma space straight x element of open square brackets 1 half comma space 1 close square brackets

143 Views

43. Prove space that space fraction numerator 9 straight pi over denominator 8 end fraction minus 9 over 4 space sin to the power of negative 1 end exponent 1 third equals 9 over 4 sin to the power of negative 1 end exponent fraction numerator 2 square root of 2 over denominator 3 end fraction.
101 Views

44.

Show that tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 2 over 11 equals tan to the power of negative 1 end exponent 3 over 4.

107 Views

Advertisement
45.

Prove that sin to the power of negative 1 end exponent space straight x plus space cos to the power of negative 1 end exponent space straight x equals straight pi over 2

170 Views

46.

Prove that tan to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent straight x equals straight pi over 2 comma space straight x element of straight R

116 Views

47.

Prove that cos e c to the power of negative 1 end exponent x plus s e c to the power of negative 1 end exponent x equals straight pi over 2 comma space open vertical bar x close vertical bar greater or equal than 1

99 Views

Advertisement

48. Prove that sin to the power of negative 1 end exponent x plus sin to the power of negative 1 end exponent x y equals sin to the power of negative 1 end exponent open square brackets x square root of 1 minus y squared end root plus square root of 1 minus x squared end root close square brackets


Put sin–1.x = θ, sin–1 y = ϕ
∴x = sin θ, y = sin ϕ
Now sin (θ + ϕ) = sin θ cos ϕ + cos θ sinϕ

therefore space space sin left parenthesis straight theta plus straight ϕ right parenthesis sinθ square root of 1 minus sin squared straight ϕ end root plus square root of 1 minus sin squared straight theta. sinϕ end root
rightwards double arrow space space space straight theta plus straight ϕ equals sin to the power of negative 1 end exponent open square brackets sinθ square root of 1 minus sin squared straight ϕ end root plus sinϕ square root of 1 minus sin squared straight theta end root close square brackets
rightwards double arrow space space space sin to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent straight y equals sin to the power of negative 1 end exponent open square brackets straight x square root of 1 minus straight y squared end root plus straight y square root of 1 minus straight x squared end root close square brackets

113 Views

Advertisement
Advertisement
49. Prove that sin to the power of negative 1 end exponent x minus sin to the power of negative 1 end exponent y equals sin to the power of negative 1 end exponent open square brackets x square root of 1 minus y squared end root minus y square root of 1 minus x squared end root close square brackets
110 Views

50. Prove that cos to the power of negative 1 end exponent x plus cos to the power of negative 1 end exponent y equals cos to the power of negative 1 end exponent open square brackets x y minus square root of left parenthesis 1 minus x squared right parenthesis left parenthesis 1 minus y squared right parenthesis end root close square brackets
161 Views

Advertisement