Prove that :  from Mathematics Inverse Trigonometric Functions

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

71. Show that sin to the power of negative 1 end exponent 12 over 13 plus cos to the power of negative 1 end exponent 4 over 5 plus tan to the power of negative 1 end exponent 63 over 16 equals straight pi.
278 Views

Advertisement

72. Prove that : tan to the power of negative 1 end exponent 63 over 16 equals sin to the power of negative 1 end exponent 5 over 13 plus cos to the power of negative 1 end exponent 3 over 5


Let space sin to the power of negative 1 end exponent open parentheses 5 over 13 close parentheses equals straight theta space space space and space cos to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses equals straight ϕ
Now space space space space space space tan space straight theta equals fraction numerator sin space straight theta over denominator cos space straight theta end fraction equals fraction numerator sin open parentheses sin to the power of negative 1 end exponent open parentheses begin display style 5 over 13 end style close parentheses close parentheses over denominator cos open parentheses sin to the power of negative 1 end exponent open parentheses begin display style 5 over 13 end style close parentheses close parentheses end fraction
space space space space space space space space space space space space space space space space space space space equals fraction numerator sin open parentheses sin to the power of negative 1 end exponent begin display style 5 over 13 end style close parentheses over denominator square root of 1 minus sin squared open parentheses sin to the power of negative 1 end exponent begin display style 5 over 13 end style close parentheses end root end fraction equals fraction numerator begin display style 5 over 13 end style over denominator square root of 1 minus open parentheses begin display style 5 over 13 end style close parentheses squared end root end fraction equals fraction numerator begin display style 5 over 13 end style over denominator begin display style 12 over 13 end style end fraction equals 5 over 12
and space space space space space space space space tan space straight ϕ space fraction numerator sin space straight ϕ over denominator cos space straight ϕ end fraction equals fraction numerator sin open parentheses cos to the power of negative 1 end exponent open parentheses begin display style 3 over 5 end style close parentheses close parentheses over denominator cos open parentheses cos to the power of negative 1 end exponent open parentheses begin display style 3 over 5 end style close parentheses close parentheses end fraction
space space space space space space space space space space space space equals fraction numerator square root of 1 minus cos squared open parentheses cos to the power of negative 1 end exponent begin display style 3 over 5 end style close parentheses end root over denominator cos open parentheses cos to the power of negative 1 end exponent begin display style 3 over 5 end style close parentheses end fraction equals fraction numerator square root of 1 minus open parentheses begin display style 3 over 5 end style close parentheses squared end root over denominator begin display style 3 over 5 end style end fraction equals fraction numerator begin display style 4 over 5 end style over denominator begin display style 3 over 5 end style end fraction equals 4 over 3
therefore space space space space space space space space space tan space left parenthesis straight theta plus straight ϕ right parenthesis equals fraction numerator tan space straight theta plus space tan space straight ϕ over denominator 1 minus tan space straight theta space tan space straight ϕ end fraction equals fraction numerator begin display style 5 over 12 end style plus begin display style 4 over 3 end style over denominator 1 minus 5 over 12 cross times 4 over 3 end fraction equals fraction numerator 15 plus 48 over denominator 36 minus 20 end fraction equals 63 over 16
therefore space space space space space space space space space straight theta space plus space straight ϕ space equals space tan to the power of negative 1 end exponent open parentheses 63 over 16 close parentheses
therefore space space space space space space space space space sin to the power of negative 1 end exponent open parentheses 5 over 13 close parentheses plus cos to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses equals tan to the power of negative 1 end exponent open parentheses 63 over 16 close parentheses space or space tan to the power of negative 1 end exponent open parentheses 63 over 16 close parentheses equals sin to the power of negative 1 end exponent open parentheses 5 over 13 close parentheses plus cos to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses.
95 Views

Advertisement
73. Simplify tan to the power of negative 1 end exponent open square brackets fraction numerator straight a space cos space straight x minus straight b space sin space straight x over denominator straight b space cos space straight x plus straight a space sin space straight x end fraction close square brackets comma space if space straight a over straight b space tan space straight x greater than negative 1.
123 Views

74.

Shoe that sin to the power of negative 1 end exponent open parentheses 2 space x square root of 1 minus x squared end root close parentheses equals 2 space sin to the power of negative 1 end exponent x comma space space minus fraction numerator 1 over denominator square root of 2 end fraction less or equal than space x space less or equal than fraction numerator 1 over denominator square root of 2 end fraction

133 Views

Advertisement
75.

Shoe that sin to the power of negative 1 end exponent open parentheses 2 space x square root of 1 minus x squared end root close parentheses equals 2 space cos to the power of negative 1 end exponent space x comma space fraction numerator 1 over denominator square root of 2 end fraction space less or equal than x less or equal than 1

126 Views

76.

Prove sin space left parenthesis 2 space sin to the power of negative 1 end exponent space straight x right parenthesis equals space 2 space straight x square root of 1 minus straight x squared end root

121 Views

77.

Prove cos to the power of negative 1 end exponent space x equals 2 space sin to the power of negative 1 end exponent space square root of fraction numerator 1 minus x over denominator 2 end fraction end root equals 2 space cos to the power of negative 1 end exponent square root of fraction numerator 1 plus x over denominator 2 end fraction end root

137 Views

78. Prove tan to the power of negative 1 end exponent square root of x equals 1 half cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus x over denominator 1 plus x end fraction close parentheses
93 Views

Advertisement
79. Prove 2 space tan to the power of negative 1 end exponent space straight x space equals space sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction equals tan to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction
250 Views

80. Prove 2 space tan to the power of negative 1 end exponent space 1 over straight x equals sin to the power of negative 1 end exponent space fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction
116 Views

Advertisement