Using principal value, evaluate the following: sin-1 sin3π5
As sin-1 sinθ=θ so sin-1 sin 3π5 =3π5But 3π5 ∉ -π2, π2
So
sin-1 sin 3π5 = sin-1 sin π- 2π5= sin-1 sin 2π5= 2π5 ∈ -π2, π2∴ Principal value is 2π5
Prove that: sin-1 45 + sin-1 513 + sin-1 1665 = π2
Solve for x: tan-1 3x + tan-1 2x = π4
What is the principal value of cos-1 -32 ?
Prove the following:
tan-1 x = 12 cos-1 1 - x1 + x , x∈ 0, 1
cos-1 1213 + sin-1 35 = sin-1 5665
Write the value of sin π3 - sin-1 - 12
cot-1 1 + sin x + 1 - sin x 1 + sin x - 1 - sin x = x2, x ∈ 0, π4
Find the value of tan-1 xy - tan-1 x - yx + y
Write the principal value of cos-1 12 - 2 sin-1 - 12 .