Using principal value, evaluate the following: sin-1 sin3π5
Prove that: sin-1 45 + sin-1 513 + sin-1 1665 = π2
Solve for x: tan-1 3x + tan-1 2x = π4
What is the principal value of cos-1 -32 ?
Let cos-1 -32 = x⇒ cos x = -32⇒ cos x = - cos π6 ⇒ cos x = cos π - π6 ⇒ cos x = cos 5π6 ⇒ x = 5π6
Therefore, the principal value of cos-1 - 32 is 5π2
Prove the following:
tan-1 x = 12 cos-1 1 - x1 + x , x∈ 0, 1
cos-1 1213 + sin-1 35 = sin-1 5665
Write the value of sin π3 - sin-1 - 12
cot-1 1 + sin x + 1 - sin x 1 + sin x - 1 - sin x = x2, x ∈ 0, π4
Find the value of tan-1 xy - tan-1 x - yx + y
Write the principal value of cos-1 12 - 2 sin-1 - 12 .