If a > b > 0, then the value of tan-1ab + tan-1a + ba - b depends on :
both a and b
b and not a
a and not b
neither a nor b
The solution of tan-1x + 2cot-1x = 2π3 is
- 13
13
- 3
3
D.
We have, tan-1x + 2cot-1x = 2π3⇒ tan-1x + 2tan-11x = 2π3⇒ tan-1x + tan-121x1 - 1x2 = 2π3 ∵ 2tan-1x = tan-12x1 - x2⇒ tan-1x + 2xx2 - 11 - 2xx2 - 1 = tan2π3⇒ x3 - x + 2xx2 - 1 - 2x2 = tan2π3⇒ x3 + x- 1 - x2 = tan2π3 ⇒ xx2 + 1- 1x2 + 1 = - 3⇒ x = 3
The value of sin2cos-153 is
53
253
459
259
sin2sin-16365 is equal to
212665
46565
86365
6365
cot-12 . 12 + cot-12 . 22 + cot-12 . 32 + ... upto ∞ is equal to
π4
π3
π2
π5
If 'x' takes negative permissible value, then sin-1(x) is equal to
- cos-11 - x2
cos-1x2 - 1
π - cos-11 - x2
cos-11 - x2
If a > b > 0, sec-1a + ba - b = 2sin-1x, then x is
- ba + b
ba + b
- aa + b
aa + b
If x ≠ nπ, x ≠ 2n + 1π2, n ∈ Z, then sin-1cosx + cos-1sinxtan-1cotx + cot-1tanx is
π6
In ∆ABC, if a = 2, B = tan-112 and C = tan-113, then (A, b) equals
3π4, 25
π4, 225
3π4, 225
π4, 25
The domain of f(x) = sin-1log2x2 is
0 ≤ x ≤ 1
0 ≤ x ≤ 4
1 ≤ x ≤ 4
4 ≤ x ≤ 6