Let A= 325413067. Express A as sum of two matrices

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

191.

If A = 2-3532-411-2, find A-1. Use it solve the system of equations.

2x - 3y + 5z = 11

3x + 2y - 4z = -5

x + y- 2z =-3


192.

Using elementary row transformations, find the inverse of the matrix A = 123257-2-4-5


 Multiple Choice QuestionsShort Answer Type

193.

Find the value of x and y if: 2130x  + y012  = 5618


 Multiple Choice QuestionsLong Answer Type

Advertisement

194.

Let A= 325413067. Express A as sum of two matrices such that one is symmetric and the other is skew symmetric.


  A = 325413067  A'= 340216537 

Now, A can be written as: 

  A = 12A + A' +  12A = A'  A + A' = 325413067 + 340216537               =  3+32+45+04+21+13+60+56+37+7               =  665629591412 A + A' = 126656295914 = 3352319252927 = P, sayNow,  P' =  3352319252927 Thus,  P = 12 A + A'  is a symmetric matrix.

Now,  A - A' = 3-32-45-04-21-13-60-56-37-7 = 0-2520-3-53012  A - A' = 0-15210-32-52320 = Q, sayNow,  Q' =   01-52-103252-320 = - 0-1-5210-32-52320 = -QThus, Q = 12  A - A' is a skew symmetric matrix. A = 325413067 = 3352319252-327  +  0-1-5210-32-52320


Advertisement
Advertisement
195.

If A = 1 2 2212221, verify that A2 – 4A – 5I = 0.


 Multiple Choice QuestionsShort Answer Type

196.

If A is an invertible matrix of order 3 and |A| = 5, then find |adj. A|.


197.

If matrix A = (1, 2, 3), write AA’, where A’ is the transpose of matrix A.


 Multiple Choice QuestionsLong Answer Type

198.

Using matrices, solve the following system of equations:
2x – 3y + 5 = 11
3x + 2y – 4z = -5
x + y – 2z= -3


Advertisement

 Multiple Choice QuestionsShort Answer Type

199.

If A =   cosα  - sinαsinα     cosα , then for what value of α is A an identity matrix?


200.

If  1  23  4    3  12   5   =  7   11k   23 , then write the value of k.


Advertisement