Using elementary row operations, find the inverse of the following matrix:
2 51 3
For a 2 x 2 matrix, A = [ aij ] whose elements are given by aij = ij, write the value of a12 .
For what value of x, the matrix 5 - x x + 12 4 is singular?
Write A-1 for A = 2 51 3
Using elementary transformations, find the inverse of the matrx
1 3 - 2- 3 0 - 121 0
The given matrix is A = 1 3 - 2- 3 0 - 1 2 1 0 .We have A A- 1 = IThus, A = I AOr, 1 3 - 2- 3 0 - 1 2 1 0 = 1 0 0 0 1 0 0 0 1 AApplying R2 → + R2 + 3 R1 and R3 → R3 - 2 R1 1 3 - 2 0 9 - 7 0 - 5 4 = 1 0 0 3 1 0 - 2 0 1 ANow, applying R2 → 19 R2 1 3 - 2 0 1 - 79 0 - 5 4 = 1 0 0 13 19 0 - 2 0 1 A
Applying R1 → R1 - 3 R2 and R3 → R3 + 5 R2 1 0 13 0 1 -79 0 0 19 = 0 - 13 0 13 19 0- 13 59 1 AApplying R3 → 9 R3 1 0 13 0 1 -790 0 1 = 0 - 13 0 13 19 0- 3 5 9 AApplying R1 → R1 - 13 R3 and R2 → R2 + 79 R3
1 0 00 1 0 0 0 1 = 1- 2 - 3 - 2 47- 3 59 A ⇒ I = 1- 2 - 3 - 2 47- 3 59 A∴ A-1 = 1- 2 - 3 - 2 47- 3 59 Hence, inverse of the matrix A is 1- 2 - 3 - 2 47- 3 59 .
If 2 35 7 1- 3- 2 4 = - 4 6- 9 x , write the value of x.
Simplify: cos θ cos θ sin θ- sin θ cos θ + sin θ sin θ - cos θcos θ sin θ
Using elementary operations, find the inverse of the following matrix:
- 1 1 212 331 1
If P = is the adjoint of a 3 x3 matrix A and |A| = 4, then α is equal to
4
11
5
Let A = . If u1 and u2 are column matrices such that Au1 = and Au2 = , then u1 +u2 is equal to