Let A = 1- 1121- 3321 and 10B = 422-&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

251.

If A = 01- 1213321, then (A(adj A)A- 1) is equal to

  • 2300030003

  • 01/6- 1/62/61/63/63/62/61/6

  • - 6000- 6000- 6

  • None of these


Advertisement

252.

Let A = 1- 1121- 3321 and 10B = 422- 50α1- 23. If B is the inverse of A, then α is

  • 5

  • - 2

  • 1

  • - 1


A.

5

We have,A = 1- 1121- 3111 and 10 B = 422- 50α1- 23Given that B is inverse of A. AB = I A10B = 10I             multiplying by 10 on both sides 1- 1121- 3111422- 50α1- 23 = 1000010001                   1005 - α010α - 500α + 5 = 1000010001                                           α = 5


Advertisement
253.

If A and B are two matrices such that rank of A = m and rank of B = n, then

  • rank (AB) rank (B)

  • rank (AB) rank (A)

  • rank (AB) min (rank A, rank B)

  • rank(AB) = mn


254.

If the matrix A = 131- 12- 3012, then adj (adj A) is equal to

  • 123612- 1224- 3601224

  • 1226- 122436- 36012- 24

  • 12- 123624- 24- 3601224

  • None of the above


Advertisement
255.

If A = 13121- 1301 then rank (A) is equal to

  • 4

  • 1

  • 2

  • 3


256.

Find the value of k for which the\ simultaneous equations x + y + z = 3; x + 2 y + 3Z = 4 and x + 4 y + kz = 6 will not have a unique solution.

  • 0

  • 5

  • 6

  • 7


257.

If A = 3457 then A . (adj A) is equal to

  • A

  • A

  • A . I

  • None of these


258.

If the points (x1, y1), (x2, y2) and (x3, y3) are collinear, then the rank of the matrix x1y11x2y21x3y31 will always be less than

  • 3

  • 2

  • 1

  • None of these


Advertisement
259.

If A = 1- 570791189, then trace of matrix A is

  • 17

  • 25

  • 3

  • 12


260.

If x, y and z are all distinct and xx21 + x3yy21 + y3zz1 + z3 = 0, then the value of xyz is 

  • - 2

  • - 1

  • - 3

  • None of these


Advertisement