If the polynomial x4 – 6x3 + 16x2 – 25x + 10 is divided b

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

351. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also, verify the relationship between the zeroes and coefficients in each case:
x3 - 4x2 + 5x - 2;  2, 1, 1
403 Views

 Multiple Choice QuestionsShort Answer Type

352. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.
171 Views

 Multiple Choice QuestionsLong Answer Type

353. If the zeroes of the polynomial x3 – 3x+ x + 1 are (a – b), a, (a + b), find a and b.
226 Views

354. If two zeroes of the polynomial x4 – 26x-26x2 + 138x –35 are 2 ± square root of 3, find other two zeroes.
366 Views

Advertisement
Advertisement

355. If the polynomial x4 – 6x3 + 16x2 – 25x + 10 is divided by another polynomial x2 - 2x + k, the remainder comes out to be x + a, find ‘k’ and ‘a’.


By division algorithm, we have It is given that f(a) = x4 – 6x3 + 16x2 – 25x + 10, when divided by x2 – 2x + k leaves x + a as remainder.
:. f(x) – (x + a) = x– 6x3 + 16x2–26x + 10 – a is is exactly divisible by x2 – 2x + k.
Let us now divide x4 – 6x3 + 16x2 – 26x + 10 – a by x2 – 2x + k.

By division algorithm, we have It is given that f(a) = x4 – 6x3 +

For f(x) – (x + a) = x4 – 6x3 + 16x2 – 26x + 10 – a to be exactly divisible by x2 – 2x + k, we must have
(–10 + 2k) x + (10 – a – 8k + k2) = 0 for all x
⇒ – 10 + 2k = 0, 10 – a – 8k + k2 = 0
⇒ k = 5, 10 – a – 40 + 25 = 0
⇒ k = 5 and a = – 5.

2902 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

356. Is x = 1 a zero of polynomial x3– a2 – x + 1 ?
621 Views

357. For what value of k, (–4) is a zero of the polynomial x2 – x – (2k + 2)?
230 Views

358. For what value of p, (–4) is a zero of the polynomial x2 – 2x – (7p + 3) ?
715 Views

Advertisement
359. Which of the following are polynomials :
(i)       5 straight x cubed plus 2 over straight x cubed plus 1
(ii) <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
201 Views

360. Show that 0 is a zero of the polynomial x2 + 5x.
210 Views

Advertisement