If α and β are the zeroes of quadratic polynomial ax2 + bx +

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

421. Find a quadratic polynomial whose zeroes are 1 and (-3). Verify the relation between the coefficients and zeroes of the polynomial.
2920 Views

422. Find the zeroes of the quadratic polynomial 4x2 – 4x – 3 and verify the relation between the zeroes and its coefficients.
3023 Views

423. If α and β are the zeroes of the polynomial ax2 + bx + c then find
(a)      straight alpha over straight beta plus straight beta over straight alpha             (b)   space space straight alpha squared plus straight beta squared

152 Views

 Multiple Choice QuestionsShort Answer Type

424.

If α and β are the zeroes of the quadratic polynomial ax2 + bx + c. Find the value of α2– β2.

145 Views

Advertisement
425. If α and β are the zeroes of the quadratic polynomial ax2 + bx + c, then find the value of α3 + β3.
129 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

426. If α and β are the zeroes of quadratic polynomial ax2 + bx + c, then find straight alpha squared over straight beta plus straight beta squared over straight alpha.


Since, α and β are the zeroes of quadratic polynomial ax2 + bx + c. Then,
              straight alpha plus straight beta equals fraction numerator negative straight b over denominator straight a end fraction space space space space and space space straight alpha. space straight beta space equals space straight c over straight a.
Now, 
       straight alpha squared over straight beta plus straight beta squared over straight alpha equals fraction numerator straight alpha cubed plus straight beta cubed over denominator βα end fraction
                          space equals fraction numerator left parenthesis straight alpha plus straight beta right parenthesis cubed minus 3 αβ left parenthesis straight alpha plus straight beta right parenthesis over denominator αβ end fraction
                         space space space equals fraction numerator open parentheses begin display style fraction numerator negative straight b over denominator straight a end fraction end style close parentheses cubed minus 3 open parentheses begin display style straight c over straight a end style close parentheses open parentheses begin display style fraction numerator negative straight b over denominator straight a end fraction end style close parentheses over denominator begin display style straight c over straight a end style end fraction
equals fraction numerator begin display style fraction numerator negative straight b cubed over denominator straight a cubed end fraction end style plus begin display style fraction numerator 3 bc over denominator straight a squared end fraction end style over denominator begin display style straight c over straight a end style end fraction equals fraction numerator begin display style fraction numerator negative straight b cubed plus 3 abc over denominator straight a cubed end fraction end style over denominator begin display style straight c over straight a end style end fraction
space space space space space space equals space fraction numerator 3 abc minus straight b cubed over denominator straight a cubed end fraction cross times straight a over straight c equals fraction numerator 3 abc minus straight b cubed over denominator straight a squared straight c end fraction.
134 Views

Advertisement
427. If α and β are the zeroes of the quadratic polynomial P(x) = Kx2 + 4x + 4 such that α2 + β2 = 24, find the value of K.
433 Views

 Multiple Choice QuestionsShort Answer Type

428. If α and β are the zeroes of quadratic polynomial x2 + x – 2. Find the value of (α–1 + β–1).
107 Views

Advertisement
429. Find a quadratic polynomial when the sum and product of its zeroes respectively
(i)  space 1 fourth comma space minus 1                  (ii)    square root of 2 comma space fraction numerator negative 1 over denominator 3 end fraction
152 Views

 Multiple Choice QuestionsLong Answer Type

430. If α, β are the zeroes of the quadratic polynomial 2x2– 3x – 5, form a polynomial whose zeroes are 2α + 1 and 2β + 1.
213 Views

Advertisement