Factorise each of the following:
(x2 + x)2 + 4(x2 + x) - 12
(x2 + x)2 + 4(x2 + x) - 12
(x2 + x)2 + 4(x2 + x) - 12 = y2 + 4y - 12
| where y = x2 + x
= y2 + 6y - 2y - 12
= y(y + 6) - 2(y + 6)
= (y + 6)(y - 2)
= (x2 + x + 6)(x2 + x - 2)
| ∵ = x2 + x
= (x2 + x + 6)(x2 + 2x - x - 2)
= (x2 + x + 6)[x(x + 2) - 1(x + 2)]
= (x2 + x + 6)(x + 2)(x - 1).