A random variable X takes the values 0, 1 and 2. If P(X = 1) = P(

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1231.

In binomial distribution the probability of getting success is 14 and the standard deviation is 3. Then, its mean is

  • 6

  • 8

  • 10

  • 12


1232.

If the mean of a poisson distribution is 12, then the ratio of P(X = 3) to P(X = 2) is

  • 1 : 2

  • 1 : 4

  • 1 : 6

  • 1 : 8


Advertisement

1233.

A random variable X takes the values 0, 1 and 2. If P(X = 1) = P(X = 2) and P(X = 0) = 0.4, then the mean of the random variable X is

  • 0.2

  • 0.7

  • 0.5

  • 0.9


D.

0.9

We have, PX = 1 = PX = 2        ...iλ1!eλ = λ22!eλ  λ = 2Also, PX = 0 + PX = 1 + PX = 2 = 1 0.4 + PX = 1 +PX = 2 = 1 PX = 1 +PX = 2 = 0.6 = 610 = 35   from Eq.(i)Also, PX = 1 = 310 PX = 1 = PX = 2 = 310Mean X0PX = 0 + X1PX = 1 + X2PX = 2                    = 0 + 0 . 310 + 2 . 310 = 910 = 0.9


Advertisement
1234.

If PA  B = 0.8 and PA  B = 0.3, then PA + PB is equal to :

  • 0.3

  • 0.5

  • 0.8

  • 0.9


Advertisement
1235.

A coin is tossed n times the probability of getting head at least once is greater than 0.8. Then, the least value of such n is :

  • 2

  • 3

  • 4

  • 5


1236.

If X is a poisson variate with P(X = 0) = 0.8, then the variance of X is

  • loge20

  • log1020

  • loge54

  • 0


1237.

If the range of a random variable X is {0, 1, 2, 3, 4.....} with P(X = k) = k + 1a3k , fork  > 0, then a is equal to

  • 23

  • 49

  • 827

  • 1681


1238.

For a binomial variate X with n = 6, if P(X = 2) = 9 P(X = 4), then its variance is

  • 89

  • 14

  • 98

  • 4


Advertisement
1239.

If A and B are two independent events such that

P(B) = 27, PA  Bc= 0.8, then P(A) is equal to:

  • 0.1

  • 0.2

  • 0.3

  • 0.4


1240.

A number n is chosen at random from {1, 2, 3, 4, . . . , 1000}. The probability that n is a number that leaves remainder 1 when divided by 7, is :

  • 71500

  • 1431000

  • 72500

  • 711000


Advertisement