Suppose that E1 and E2 are two events of a random experiment such

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1241.

In the random experiment of tossing two unbiased dice let E be the event of getting the sum 8 and F be the event of getting even numbers on both the dice. Then :

I. P(E) = 736 II. p (F) = 13

Which of the following is a correct statement ?

  • Both I and II are true

  • Neither I nor II is true

  • I is true, II is false

  • I is false, II is true


1242.

The probability distribution of a random variable X is given by
X = x 0 1 2 3 4
P(X = x) 0.4 0.3 0.1 0.1 0.1

The variance of X is

  • 1.76

  • 2.45

  • 3.2

  • 4.8


1243.

If A and B  are  independent events  of arandom experiment such that P(A  B) = 16 and PA¯  B = 13,  then PA = ?

  • 14

  • 13

  • 12

  • 23


1244.

Let S be the sample space of the random experiment of throwing simultaneously two unbiased dice with six faces (numbered1 to 6) and let Ek = {(a, b) ∈ S : ab = k} for k 1. If pk + P(Ek) for k  1, then the correct among the following, is

  • p1 <  P30 < P4  < P6 

  • p36 <  P6 < P2  < P4 

  • p1 <  P11 < P4  < P6 

  • p36 <  P11 < P6  < P4 


Advertisement
1245.

For k = 1, 2, 3 the box Bk contains k red balls and        (k + 1) white balls. Let P(B1) = 12, P(B2) = 13 and P(B3) = 16. A box is selected at 36 random and a ball is drawn from it. If a redball is drawn, then the probability that it has come from box B, is

  • 3578

  • 1439

  • 1013

  • 1213


1246.

The distribution of a random variable X is given below
X = x - 2 - 1 3
P(X = x) 1/10 k 1/5 2k 3/10 k

  • 110

  • 210

  • 310

  • 710


1247.

If X is a Poisson variate such that P(X = 1) = P(X = 2), then P(X = 4) is equal to

  • 12e2

  • 13e2

  • 23e2

  • 1e2


1248.

 A and B are events of a random experimentsuch that PA U B = 45, PA U B = 710 and P(B) = 25, then P(A) = ?

  • 910

  • 810

  • 710

  • 35


Advertisement

 Multiple Choice QuestionsMatch The Following

Advertisement

1249.

Suppose that E1 and E2 are two events of a random experiment such that P(E1) = 1/4, P(E2/E1) and P(E1/E2) = 1/4, observe the lists given below

        List I                        List II

(A)    P(E2)                  (i) 1/4

(B)    PE1  E2           (ii) 5/8

(C)   PE1/ E2             (iii) 1/8

(D)   PE1/E2              (iv) 3/8

                                  (v) 3/8

                                  (vi) 3/4

The correct matching of the List I from the List II is

 

A. (A) (B) (C) (D) (i) (ii) (iii) (vi) (i)
B. (A) (B) (C) (D) (ii) (iv) (v) (vi) (i)
C. (A) (B) (C) (D) (iii) (iv) (ii) (vi) (i)
D. (A) (B) (C) (D) (iv) (i) (ii) (iii) (iv)


A.

(A) (B) (C) (D)

(i)

B.

(A) (B) (C) (D)

(ii)

C.

(A) (B) (C) (D)

(iii)

D.

(A) (B) (C) (D)

(iv)


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1250.

If Ai (i = 1, 2, 3, ... , n) are n independent events with P(Ai) = 11 + i for each i, then the probability that none of Ai occurs is

  • n - 1n + 1

  • nn + 1

  • nn + 2

  • 1n + 1


Advertisement